×

zbMATH — the first resource for mathematics

The treatment of nonhomogeneous Dirichlet boundary conditions by the p- version of the finite element method. (English) Zbl 0673.65066
This paper forms a part of the study of the authors on the question of imposing nonhomogeneous essential boundary conditions of Dirichlet type in the finite element analysis of a two dimensional problem. Here the problem of implementation in the p-version of the finite element method is considered and optimal error estimates are obtained.
Reviewer: V.Subba-Rao

MSC:
65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs
35J25 Boundary value problems for second-order elliptic equations
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Andersson, B., Falk, U.: Finite element analysis of three-dimensional structures using adaptivep-extensions. The aeronautical research Institute of Sweden, FFA 5-H-800, April 1986. (Presented at Nato ASI, Lisbon, Portugal, June 1986)
[2] Arnold, D., Babuška, I., Osborn, J.: Finite element methods: Principles for their, selection. Comput. Methods Appl. Math. Eng.45, 57–96 (1984) · Zbl 0536.73061 · doi:10.1016/0045-7825(84)90151-8
[3] Babuška, I.: Thep andh versions of the finite element method. The State of the Art. Tech. In: Dwoyer, D.L., Hussaini, M.Y., Voigt, R.G. (eds.) Finite elements, theory and application, pp. 199–239. Berlin Heidelberg New York: Springer 1988
[4] Babuška, I., Guo, B.: Theh version of the finite element method for domains with curved boundaries. SIAM Numer. Anal.25, 837–861 (1988) · Zbl 0655.65124 · doi:10.1137/0725048
[5] Babuška, I., Suri, M.: The optimal convergence rate of thep-version of the finite element method. SIAM J. Numer. Anal.24, 750–776 (1987) · Zbl 0637.65103 · doi:10.1137/0724049
[6] Babuška, I., Suri, M.: Theh version of the finite element method with quasiuniform meshes. Rairo Model. Math. Anal. Numer.21, 198–238 (1987) · Zbl 0623.65113
[7] Babuška, I., Szabo, B.A.: Lecture notes on finite element analysis. (In preparation)
[8] Barnhart, M.A., Eiseman, J.R.: Analysis of a stiffened plate detail usingp-version andh-version finite element techniques. Paper presented at the First World Congress on Computational Mechanics, Sept. 22–26 (1986). The University of Texas at Austin
[9] Bergh, I., Lofstrom, J.: Interpolation Spaces. 1th Ed. Berlin, Heidelberg, New York: Springer 1976
[10] Gui, W., Babuška, I.: Theh, p andh versions of the finite element method for 1-dimension. Part I: The error analysis of thep-version. Numer. Math.49, 577–612 (1986). Part II: The analysis of theh andh versions. Numer. Math.49, 613–657 (1986). Part III: The adaptiveh version. Numer. Math.49, 659–683 (1986) · Zbl 0614.65088 · doi:10.1007/BF01389733
[11] Guo, B., Babuška, I.: Theh version of the finite element method. Part 1: The basic approximation results. Computational Mechanics1, 21–41 (1986). Part 2: General results and applications. Comput. Mech.1, 203–220 (1986) · Zbl 0634.73058 · doi:10.1007/BF00298636
[12] Lions, J.L., Magenes, E.: Non-Homogeneous Boundary Value Problems and Applications. Berlin, Heidelberg, New York: Springer 1972 · Zbl 0227.35001
[13] Szabo, B.A.: PROBE, Theoretical Manual, 1 th Ed. Noetic Tech., St. Louis, 1985
[14] Szabo, B.A.: Implementation of a finite element software system withh andp-extension capabilities. Finite Elem. Anal. Des.2, 177–194 (1986) · doi:10.1016/0168-874X(86)90016-8
[15] Szabo, B.A.: Mesh Design for thep-version of the finite element method. Comput. Methods Appl. Math. Eng.55, 181–197 (1986) · Zbl 0587.73106 · doi:10.1016/0045-7825(86)90091-5
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.