×

zbMATH — the first resource for mathematics

Bounded solutions of linear periodic abstract parabolic equations. (English) Zbl 0673.35041
The author studies the asymptotic behavior of the evolution operator G(t,s) associated with a family of generators of analytic semigroup \(\{A(t):\quad t\in {\mathbb{R}}\}\) with periodic condition \(A(t+T)=A(t)\) in some Banach space. Some new maximal regularity results for the bounded solution in unbounded time intervals were established. The results were based on a series estimates on the operator G(t,s). The convergences of the bounded solutions to the parabolic type equation has \(t\to +\infty\) (or \(t\to -\infty)\) in some suitable sense are the consequences of the regularity results. An example of a linear parabolic nonhomogeneous equation is presented to illustrate the main results.
Reviewer: J.Yong

MSC:
35G10 Initial value problems for linear higher-order PDEs
35K25 Higher-order parabolic equations
47D03 Groups and semigroups of linear operators
35B65 Smoothness and regularity of solutions to PDEs
35B40 Asymptotic behavior of solutions to PDEs
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] DOI: 10.1016/0022-1236(85)90050-3 · Zbl 0563.47028 · doi:10.1016/0022-1236(85)90050-3
[2] DOI: 10.1007/BFb0099178 · doi:10.1007/BFb0099178
[3] Amann, Nonlinear Analysis pp 1– (1978) · doi:10.1016/B978-0-12-165550-1.50007-0
[4] DOI: 10.1002/cpa.3160150203 · Zbl 0109.32701 · doi:10.1002/cpa.3160150203
[5] Triebel, Interpolation Theory, Function Spaces, Differential Operators (1978) · Zbl 0387.46033
[6] Tanabe, Osaka J. Math. 12 pp 363– (1960)
[7] Sobolevskiń≠, Amer. Math. Soc. Transl. 49 pp 1– (1966) · Zbl 0178.50301 · doi:10.1090/trans2/049/01
[8] DOI: 10.1016/0022-247X(85)90353-1 · Zbl 0589.47042 · doi:10.1016/0022-247X(85)90353-1
[9] Schaefer, Banach Lattices and Positive Operators (1974) · Zbl 0296.47023 · doi:10.1007/978-3-642-65970-6
[10] Lunardi, Diff. & Int. Equations 1 pp 253– (1988)
[11] DOI: 10.1016/0022-0396(86)90056-2 · Zbl 0596.45019 · doi:10.1016/0022-0396(86)90056-2
[12] DOI: 10.1007/BF02780395 · Zbl 0655.47036 · doi:10.1007/BF02780395
[13] DOI: 10.1007/BFb0072770 · doi:10.1007/BFb0072770
[14] Henry, Lecture Notes in Mathematics 840 (1981)
[15] DOI: 10.1007/BF01776844 · Zbl 0579.34001 · doi:10.1007/BF01776844
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.