zbMATH — the first resource for mathematics

p-adic Feynman and string amplitudes. (English) Zbl 0671.22011
It is shown that the scalar models of the field theory over p-adic numbers are the analogs of Dyson’s hierarchical models (after discretization). The standard methods of quantum field theory, in particular Feynman diagrams, renormalization and Wilson’s renormalization group are proven to have generalizations to the p-adic case. The explicit representation for p-adic Feynman amplitudes and for the string scattering Koba-Nielsen amplitudes is given. It appears that in the p- adic case the exact representation as a sum of elementary functions can be obtained.
Reviewer: P.Maslanka

22E70 Applications of Lie groups to the sciences; explicit representations
11F33 Congruences for modular and \(p\)-adic modular forms
81Q30 Feynman integrals and graphs; applications of algebraic topology and algebraic geometry
83E15 Kaluza-Klein and other higher-dimensional theories
58J50 Spectral problems; spectral geometry; scattering theory on manifolds
22E50 Representations of Lie and linear algebraic groups over local fields
53C80 Applications of global differential geometry to the sciences
74K05 Strings
11S80 Other analytic theory (analogues of beta and gamma functions, \(p\)-adic integration, etc.)
81T17 Renormalization group methods applied to problems in quantum field theory
Full Text: DOI
[1] Lerner, E. Y., Missarov, M. D.: The scalar models ofp-adic quantum field theory and hierarchical model of Dyson, submitted to ?Theoretical and Mathematical physics?
[2] Bleher, P. M., Sinai, Y. G.: Commun. Math. Phys.45 247 (1975)
[3] Collet, P., Eckmann, J.-P.: A renormalization group analysis of the hierarchical model in statistical mechanics. Lecture Notes in Physics vol. 74, pp. 1-199 Berlin, Heidelberg, New York: Springer 1978
[4] Bleher, P. M.: Commun. Math. Phys.84, 557 (1982) · Zbl 0515.60058
[5] Gawedzki, K., Kupiainen, A.: J. Stat. Phys.29, 683 (1982)
[6] Volovich, I. V.: Number theory as the ultimate physical theory, preprint CERN-TH.4781/87 · Zbl 1258.81074
[7] Volovich, I. V.: Class. Quant. Grav.4, L83 (1987)
[8] Grossman, B.: Phys. Lett. B,197, 101 (1987) · Zbl 0694.22006
[9] Freund, P.O.G., Olson, M.: Non-Archimedian Strings. Chicago, IL: University of Chicago, preprint EFI-87-54
[10] Freund, P. G. O., Witten, E.: Adelic String Amplitudes, Institute for Advanced Studies, preprint IASSNS-HEP-87/42
[11] Gervais, J. L.:p-adic Analyticity and Virasoro Algebras for Conformal Theories in more than two dimensions, Ecole Normale, Preprint LPTENS 87/32 (1987)
[12] Brekke, L., Freund, P. G. O., Olson, M., Witten, E.: Non-Archimedian String Dynamics, University of Chicago, Preprint EFI-87-101
[13] Marinari, E., Parisi, G.: On thep-adic Five Point Function, Preprint ROM2F-87/38 (1987)
[14] Rammal, R., Toulouse, G., Virasoro, M. A.: Rev. Mod. Phys.58, 699 (1986)
[15] Gel’fand, I. M., Graev, M. I., Pyatetskii-Shapiro, I. I.: Representation theory and Automorphic functions London: Saunders 1966
[16] Bleher, P. M., Missarov, M. D.: Commun. Math. Phys.74, 255 (1980)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.