Solomonoff, A.; Turkel, E. Global properties of pseudospectral methods. (English) Zbl 0668.65091 J. Comput. Phys. 81, No. 2, 239-276 (1989). The accuracy of a special pseudospectral algorithm both for approximating functions and numerical solutions of hyperbolic and elliptic differential equations is considered. The derivative matrix for a general sequence of collocation points is explicitly constructed and the authors explore the effect of several factors on the performance of these methods. The result of this consideration is that global methods cannot be interpreted in terms of local methods. For example, the accuracy of the approximation differs when large gradients of the function occur near the center of the region or in the vicinity of the boundary. This difference does not depend on the density of the collocation points near the boundaries. Hence, intuition based on finite difference methods can lead to false results. Reviewer: J.Vaníček Cited in 21 Documents MSC: 65N35 Spectral, collocation and related methods for boundary value problems involving PDEs 65D05 Numerical interpolation 35J25 Boundary value problems for second-order elliptic equations 35L20 Initial-boundary value problems for second-order hyperbolic equations Keywords:pseudospectral algorithm; collocation; global methods; local methods PDF BibTeX XML Cite \textit{A. Solomonoff} and \textit{E. Turkel}, J. Comput. Phys. 81, No. 2, 239--276 (1989; Zbl 0668.65091) Full Text: DOI References: [1] Bayliss, A.; Jordan, K.E.; LeMesurier, B.J.; Turkel, E., Bull. siesmol. soc. amer., 76, 1115, (1986) [2] Bayliss, A.; Matkowsky, B.J., J. comput. phys., 71, 147, (1987) [3] Canuto, C.; Quarteroni, A., Math. comput., 38, 67, (1982) [4] Deville, M.; Haldenwang, P.; Labrosse, G., () [5] Gottlieb, D.; Orszag, S.Z., Numerical analysis of spectral methods: theory and applications, (1977), SIAM Philadelphia [6] Gottlieb, D.; Orszag, S.Z.; Turkel, E., Math. comput., 37, 293, (1981) [7] Gottlieb, D.; Turkel, E., (), 115 [8] Guillard, H.; Peyret, R., (), (unpublished) [9] Kopriva, D., App. numer. math., 2, 221, (1986) [10] Korczak, K.Z.; Patera, A.T., J. comput. phys., 62, 361, (1986) [11] Korovkin, P.P., Linear operators and approximation theory, (1960), Hindustan Publ Delhi, transl. from Russian · Zbl 0094.10201 [12] Krylov, V.I., Approximate calculation of integrals, (1962), Macmillan Co New York, transl. by A. H. Stroud · Zbl 0111.31801 [13] McCabe, J.H.; Philips, G.M., Bit, 13, 434, (1973) [14] Markushevich, A.I., (), transl. by R. A. Silverman [15] Meinardus, G., Approximation of functions: theory and numerical methods, (1967), Springer-Verlag Berlin · Zbl 0152.15202 [16] Natanson, I.P., () [17] Powell, M.J.D., Approximation theory and methods, (1975), Cambridge Univ. Press Cambridge · Zbl 0453.41001 [18] Rivlin, T.J., An introduction to the approximation of functions, (1979), Blaisdell Waltham, MA · Zbl 0412.41012 [19] Stenger, F., SIAM rev., 23, 165, (1981) [20] Tadmor, E., SIAM J. numer. anal., 23, 1, (1986) [21] Tal-Ezer, H., SIAM J. numer. anal., 23, 11, (1986) [22] Tal-Ezer, H., J. comput. phys., 67, 145, (1986) [23] Taylor, T.D.; Hirsh, R.S.; Nadworny, M.M., Comput. & fluids, 12, 1, (1984) [24] Trefethen, L.N.; Trummer, M.R., J. SIAM numer. anal., 24, 1008, (1987) [25] Zang, T.A.; Wong, Y.S.; Hussaini, M.Y., J. comput. phys., 54, 489, (1984) [26] Zygmund, A., () This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.