×

zbMATH — the first resource for mathematics

Hamiltonian structure for the modulation equations of a sine-Gordon wavetrain. (English) Zbl 0668.35064
Die Autoren untersuchen die sine-Gordon-Gleichung \[ \epsilon^ 2(\partial^ 2_ t-\partial^ 2_ x)u+\sin u=0, \] wobei \(\epsilon\) ein kleiner Parameter ist.
Reviewer: W.Wendt

MSC:
35L70 Second-order nonlinear hyperbolic equations
35B30 Dependence of solutions to PDEs on initial and/or boundary data and/or on parameters of PDEs
35C05 Solutions to PDEs in closed form
35Q99 Partial differential equations of mathematical physics and other areas of application
35B10 Periodic solutions to PDEs
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] M. J. Ablowitz and D. J. Benney, The evolution of multi-phase modes for nonlinear dispersive waves , Stud. Appl. Math. 49 (1970), 225-238. · Zbl 0203.41001
[2] M. J. Ablowitz, D. J. Kaup, A. C. Newell, and H. Segur, Method for solving the sine-Gordon equation , Phys. Rev. Lett. 30 (1973), 1262-1264. · doi:10.1103/PhysRevLett.30.1262
[3] R. Abraham and J. E. Marsden, Foundations of Mechanics , Benjamin/Cummings, Reading, MA, 1978. · Zbl 0393.70001
[4] E. Daté, Multisoliton solutions and quasiperiodic solutions of nonlinear equations of sine-Gordon type , Osaka J. Math. 19 (1982), no. 1, 125-158. · Zbl 0505.35076
[5] N. M. Ercolani and M. G. Forest, The geometry of real sine-Gordon wavetrains , Comm. Math. Phys. 99 (1985), no. 1, 1-49. · Zbl 0591.35065 · doi:10.1007/BF01466592
[6] N. Ercolani, M. G. Forest, and D. W. McLaughlin, Modulational stability of two phase sine-Gordon wavetrains , Stud. Appl. Math. 71 (1984), no. 2, 91-101. · Zbl 0557.35120
[7] N. Ercolani, M. Forest, and D. W. McLaughlin, Oscillations and instabilities in near integrable PDEs , Nonlinear Systems of Partial Differential Equations in Applied Mathematics, Part 1 (Santa Fe, N.M., 1984) eds. D. Holm, J. M. Hyman, and B. Nicolaenko, Lectures in Appl. Math., vol. 23, Amer. Math. Soc., Providence, RI, 1986, pp. 3-46. · Zbl 0605.35079
[8] J. Fay, Theta Functions on Riemann Surfaces , Lecture Notes in Mathematics, vol. 352, Springer-Verlag, New York, 1984. · Zbl 0281.30013 · doi:10.1007/BFb0060090
[9] H. Flaschka, M. G. Forest, and D. W. McLaughlin, Multiphase averaging and the inverse spectral solution of the Korteweg-deVries equation , Comm. Pure Appl. Math. 33 (1980), no. 6, 739-784. · Zbl 0454.35080 · doi:10.1002/cpa.3160330605
[10] H. Flaschka and D. W. McLaughlin, Canonically conjugate variables for the Korteweg-de Vries equation and the Toda lattice with periodic boundary conditions , Progr. Theoret. Phys. 55 (1976), no. 2, 438-456. · Zbl 1109.35374 · doi:10.1143/PTP.55.438
[11] H. Flaschka, A. C. Newell, and T. Ratiu, Kac-Moody Lie algebras and soliton equations. II. Lax equations associated with \(A_1^(1)\) , Phys. D 9 (1983), no. 3, 300-323. · Zbl 0643.35098 · doi:10.1016/0167-2789(83)90274-9
[12] M. G. Forest and D. W. McLaughlin, Canonical variables for the periodic sine-Gordon equation and a method of averaging , 1978, Report of the Los ALamos National Laboratory, LA-UR 78-3318.
[13] M. G. Forest and D. W. McLaughlin, Modulations of sinh-Gordon and sine-Gordon wavetrains , Stud. Appl. Math. 68 (1983), no. 1, 11-59. · Zbl 0541.35071
[14] M. G. Forest and D. W. McLaughlin, Modulations of perturbed KdV wavetrains , SIAM J. Appl. Math. 44 (1984), no. 2, 287-300. JSTOR: · Zbl 0552.35070 · doi:10.1137/0144021 · links.jstor.org
[15] M. G. Forest and D. W. McLaughlin, Spectral theory for the periodic sine-Gordon equation: a concrete viewpoint , J. Math. Phys. 23 (1982), no. 7, 1248-1277. · Zbl 0498.35072 · doi:10.1063/1.525509
[16] B. Fornberg and G. B. Whitham, A numerical and theoretical study of certain nonlinear wave phenomena , Philos. Trans. Roy. Soc. London Ser. A 289 (1978), no. 1361, 373-404. JSTOR: · Zbl 0384.65049 · doi:10.1098/rsta.1978.0064 · links.jstor.org
[17] P. Griffiths and J. Harris, Principles of Algebraic Geometry , Wiley-Interscience, New York, 1978. · Zbl 0408.14001
[18] A. V. Gurevich and L. P. Pitaevskii, Nonstationary structure of a collisionless shock wave , Soviet Phys. JETP 38 (1974), no. 2, and B. Fornberg and G. B. Whitham, A numerical and theoretical study of certain nonlinear wave phenomena, Phil. Trans. Roy. Soc. Lond. 289 (1978), 373-404.
[19] W. D. Hayes, Group velocity and nonlinear dispersive wave propagation , Proc. Roy. Soc. (London) Ser. A 332 (1973), 199-221. · Zbl 0271.76006 · doi:10.1098/rspa.1973.0021
[20] 1 P. D. Lax and C. D. Levermore, The small dispersion limit of the Korteweg-de Vries equation. I , Comm. Pure Appl. Math. 36 (1983), no. 3, 253-290. · Zbl 0532.35067 · doi:10.1002/cpa.3160360302
[21] 2 P. D. Lax and C. D. Levermore, The small dispersion limit of the Korteweg-de Vries equation. II , Comm. Pure Appl. Math. 36 (1983), no. 5, 571-593. · Zbl 0527.35073 · doi:10.1002/cpa.3160360503
[22] 3 P. D. Lax and C. D. Levermore, The small dispersion limit of the Korteweg-de Vries equation. III , Comm. Pure Appl. Math. 36 (1983), no. 6, 809-829. · Zbl 0527.35074 · doi:10.1002/cpa.3160360606
[23] P. D. Lax and C. D. Levermore, The zero dispersion limit for the Korteweg-de Vries KdV equation , Proc. Nat. Acad. Sci. U.S.A. 76 (1979), no. 8, 3602-3606. JSTOR: · Zbl 0411.35081 · doi:10.1073/pnas.76.8.3602 · links.jstor.org
[24] J. C. Luke, A perturbation method for nonlinear dispersive wave problems , Proc. Roy. Soc. Ser. A 292 (1966), 403-412. · Zbl 0143.13603 · doi:10.1098/rspa.1966.0142
[25] H. P. McKean, The sine-Gordon and sinh-Gordon equations on the circle , Comm. Pure Appl. Math. 34 (1981), no. 2, 197-257. · Zbl 0467.35078 · doi:10.1002/cpa.3160340204
[26] D. W. MacLaughlin, Modulations of KdV wavetrains , Physica D 3 (1981), 335-343. · Zbl 1194.35377
[27] D. W. McLaughlin, On the construction of a modulating, multiphase wavetrain for a perturbed KdV equation , to appear in Proc. of Conf. on Rapid Oscillation Theory, Minnesota, ed. D. Kenderlehrer and M. Slemrod, 1985. · Zbl 0617.35114
[28] R. Miura and M. Kruskal, Application of a nonlinear WKB method to the Korteweg-DeVries equation , SIAM J. Appl. Math. 26 (1974), 376-395. · Zbl 0273.35055 · doi:10.1137/0126036
[29] D. Mumford, Tata Lectures on Theta II , Progress in Mathematics, vol. 43, Birkhäuser, Boston, 1984. · Zbl 0549.14014
[30] M. E. Schonbek, Convergence of solutions to nonlinear dispersive equations , preprint, Univ. Rhode Island, 1981. · Zbl 0496.35058 · doi:10.1080/03605308208820242
[31] L. A. Takhtadjian and L. D. Faddeev, Essentially nonlinear one-dimensional model of a classical field theory , Theor. Math. Phys. 21 (1974), 1046. · Zbl 0299.35063 · doi:10.1007/BF01035551
[32] S. Venakides, The generation of modulated wavetrains in the solutions of the Korteweg-deVries equation , preprint, 1985. · Zbl 0657.35110 · doi:10.1002/cpa.3160380616
[33] S. Venakides, The zero dispersion limit of the Korteweg-deVries equation for initial potentials with non-trivial reflection coefficient , dissertation, New York University, 1982.
[34] S. Venakides, The zero dispersion limit of the Korteweg-de Vries equation for initial potentials with nontrivial reflection coefficient , Comm. Pure Appl. Math. 38 (1985), no. 2, 125-155. · Zbl 0571.35095 · doi:10.1002/cpa.3160380202
[35] G. B. Whitham, Linear and Nonlinear Waves , Wiley-Interscience, New York, 1974. · Zbl 0373.76001
[36] G. B. Whitham, Non-linear dispersive waves , Proc. Roy. Soc. Ser. A 283 (1965), 238-261. · Zbl 0125.44202 · doi:10.1098/rspa.1965.0019
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.