# zbMATH — the first resource for mathematics

An analysis of finite-difference and finite-volume formulations of conservation laws. (English) Zbl 0662.76039
Finite-difference and finite-volume formulations are analyzed in order to clear up the confusion concerning their application to the numerical solution of conservation laws. A new coordinate-free formulation of systems of conservation laws is developed, which clearly distinguishes the role of physical vectors from that of algebraic vectors which characterize the system. The analysis considers general types of equations - potential, Euler and Navier-Stokes. Three-dimensional unsteady flows with time-varying grids are described using a single, consistent nomenclature for both formulations. Grid motion due to a non- inertial reference frame as well as flow adaptation is covered. In comparing the two formulations, it is found useful to distinguish between differences in numerical methods and differences in grid definition. The former plays a role for non-Cartesian grids and results in only cosmetic differences in the manner in which geometric terms are handled. The differences in grid definition for the two formulations is found to be more important, since it affects the manner in which boundary conditions, zonal procedures, and grid singularities are handled at computational boundaries. The proper interpretation of strong and weak conservation-law forms for quasi-one-dimensional and axisymmetric flows is brought out.

##### MSC:
 76D05 Navier-Stokes equations for incompressible viscous fluids 65N06 Finite difference methods for boundary value problems involving PDEs 65N50 Mesh generation, refinement, and adaptive methods for boundary value problems involving PDEs
Full Text:
##### References:
 [1] Vinokur, M., J. comput. phys., 14, 105, (1974) [2] MacCormack, R.W.; Paullay, A.J., AIAA paper 72-154, (Jan. 1972), (unpublished) [3] Thomas, P.D.; Lombard, C.K., Aiaa j., 17, 1030, (1979) [4] Hindman, R.G., Aiaa j., 20, 1359, (1982) [5] Roe, P.L., J. comput. phys., 43, 357, (1981) [6] Reklis, R.P.; Thomas, P.D., Aiaa j., 20, 1212, (1982) [7] Steger, J.L.; Warming, R.F., J. comput. phys., 40, 263, (1981) [8] Van Leer, B.; Van Leer, B., Flux-vector splitting for the Euler equations, (), 507, (Sept. 1982) [9] Rlzzi, A., Aiaa j., 20, 1321, (1982) [10] Kordulla, W.; Vinokur, M., Aiaa j., 21, 917, (1983) [11] {\scA. Jameson} Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, NJ, private communication (1985). [12] Holmes, D.G.; Tong, S.S., ASME jengrg gas turb. power, 107, 258, (1985) [13] Davies, D.E.; Salmond, D.J., Aiaa j., 23, 954, (1985) [14] Tong, S.S., (), (unpublished) [15] Drela, M.; Giles, M.; Thompkins, W.T., AIAA paper 84-1643, (June 1984), (unpublished) [16] Giles, M.; Drela, M.; Thompkins, W.T., (), 394 [17] Jameson, A.; Schmidt, W.; Turkel, E., AIAA paper 81-1259, (June 1981), (unpublished) [18] Pulliam, T.H.; Steger, J.L., AIAA paper 78-10, (Jan. 1978), (unpublished) [19] {\scP. Colella}, Lawrence Berkeley Laboratory Preprint LBL-17023, May 1984 (unpublished). [20] Borrel, M.; Montagné, J.L., (), 88 [21] Godunov, S.K.; Zabrodin, A.V.; Prokopov, G.P., USSR comp. math. math. phys., 1, 1187, (1961) [22] Osher, S.; Solomon, F., Math. comput., 38, 339, (1982) [23] Colella, P., SIAM J. sci. stat. comput., 3, 76, (1982) [24] Montagné, J.L., La recherche Aérospatiale English edition, (), 21 [25] Pandolfi, M., Aiaa j., 22, 602, (1984) [26] Dukowicz, J.K., J. comput. phys., 61, 119, (1985) [27] Anderson, W.K.; Thomas, J.L.; Van Leer, B., Aiaa j., 24, 1453, (1986) [28] Deese, J.E., AIAA paper 83-0122, (Jan. 1983), (unpublished) [29] Whitfield, D.L.; Janus, J.M., AIAA paper 84-1552, (June 1984), (unpublished) [30] Buning, P.G.; Steger, J.L., AIAA paper 82-0971, (June 1982), (unpublished) [31] Huang, L.C., J. comput. phys., 42, 195, (1981) [32] Chakravarthy, S.R.; Osher, S., AIAA paper 85-0363, (Jan. 1985), (unpublished) [33] Harten, A., J. comput. phys., 49, 357, (1983) [34] Harten, A., SIAM J. num. anal., 21, 1, (1984) [35] Yee, H.C.; Harten, A., Aiaa j., 25, 266, (1987) [36] Coakley, T.J., Nasa tm-85899, (Feb. 1984), (unpublished) [37] Chakravarthy, S.R.; Szema, K.-Y.; Goldberg, U.C.; Gorski, J.J.; Osher, S., AIAA paper 85-0165, (Jan. 1985), (unpublished) [38] Flores, J.; Holst, T.L.; Kwak, D.; Batiste, D.M., Aiaa j., 22, 1027, (1984) [39] Jameson, A.; Caughey, D.A., (), 35 [40] Caughey, D.A.; Jameson, A., () [41] Holst, T.L., Aiaa j., 17, 1038, (1979) [42] Thomas, S.D.; Holst, T.L., AIAA paper 83-0499, (Jan. 1983), (unpublished) [43] Thomas, S.D.; Holst, T.L., Nasa tm-86716, (Dec. 1985), (unpublished) [44] Thomas, P.D., (), 14 [45] {\scU. Mehta} Computational Fluid Dynamics Branch, NASA Ames Research Center, Moffett Field, CA, private communication (1985). [46] Hung, C.M.; MacCormack, R.W., Aiaa j., 16, 1090, (1978) [47] Rai, M.M., J. comput. phys., 62, 472, (1986) [48] Rai, M.M., J. comput. phys., 66, 99, (1986) [49] Rai, M.M., AIAA J. prop. power, 3, 387, (1987) [50] {\scM. M. Rai}, Applied Computational Fluids Branch, NASA Ames Research Center, Moffett Field, CA, private communication (1986). [51] Walters, R.W.; Thomas, J.L.; Switzer, G.F., AIAA paper 86-0971, (May 1986), (unpublished) [52] Eisen, D., Numer. math., 10, 397, (1967) [53] Kretss, H.O., Numer. math., 12, 223, (1968) [54] Eriksson, L.E., The aeronautical research institute of Sweden report FFA TN 1984-10, (1984), (unpublished) [55] Vinokur, M.; Lombard, C.K., () [56] Barth, T.J.; Steger, J.L., AIAA paper 85-0439, (Jan. 1985), (unpublished) [57] Lombard, C.K.; Oliger, J.; Yang, J.Y., AIAA paper 82-0976, (June 1982), (unpublished) [58] Ni, R.H., Aiaa j, 20, 1565, (1982) [59] Roe, P.L., J. comput. phys., 63, 458, (1986) [60] Vinokur, M., Nasa CR-2764, (Dec. 1976), (unpublished) [61] Stoufflet, B.; Periaux, J.; Fezoui, F.; Dervieux, A., AIAA paper 87-0560, (Jan. 1987), (unpublished) [62] Jameson, A.; Baker, T.J., AIAA paper 87-0452, (Jan. 1987), (unpublished)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.