×

zbMATH — the first resource for mathematics

String models with \(c<1\) components. (English) Zbl 0661.17018
We construct part of the current algebra of d-dimensional strings from statistical mechanical models with \(c<1\). General properties of such models are discussed and a few examples are given. In the process, a fermionic field theoretic realization of the \(c<1\) modular invariant models emerges. Bosonization aspects of the systems are discussed.

MSC:
17B65 Infinite-dimensional Lie (super)algebras
81T99 Quantum field theory; related classical field theories
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Polyakov, A.B., JETP lett., 12, 381, (1970)
[2] Shapiro, J.A.; Nahm, W.; Nahm, W.; Friedan, D.; Shenker, S.; Friedan, D.; Shenker, S., Phys. rev. D, Nucl. phys., Nucl. phys., Phys. lett., Nucl. phys., B270, 186, (1986)
[3] Seiberg, N.; Witten, E.; Parkes, A.; Alvarez-Gaumé, L.; Moore, G.; Vafa, C., Nucl. phys., CERN preprint TH.4525/86, Comm. math. phys., 106, 1, (1986)
[4] Knizhnik, V.G.; Zamolodchikov, A.B., Nucl. phys., B297, 83, (1984)
[5] Narain, K.J.; Candelas, P.; Horowitz, G.; Strominger, A.; Witten, E.; Kawai, H.; Lewellen, D.; Tye, S.; Antoniadis, I.; Bachas, C.; Kounnas, C.; Lerche, W.; Lüst, D.; Schellekens, A.N.; Narain, K.S.; Samardi, H.H.; Vafa, C.; Bluhm, R.; Dolan, L.; Goddard, P.; Kawai, H.; Lewellen, D.; Tye, S.; Lerche, W.; Nilsson, B.E.W.; Schellekens, A.N., Phys. lett., Nucl. phys., Nucl. phys., Nucl. phys., Nucl. phys., Nucl. phys., Nucl. phys., Cornell preprint CLNS 87/760, CERN preprint TH.4692/87, B289, 364, (1987)
[6] Nemechansky, D.; Yankielowicz, S.; Gepner, D.; Witten, E., Phys. rev. lett., Nucl. phys., B278, 493, (1986)
[7] Belavin, A.A.; Polyakov, A.N.; Zamolodchikov, A.B., Nucl. phys., B241, 333, (1984)
[8] Friedan, D.; Qiu, Z.; Shenker, S.; Friedan, D.; Qiu, Z.; Shenker, S.; Friedan, D.; Qiu, Z.; Shenker, S., Vertex operators in mathematics and physics, Phys. rev. lett., MSRI publication, Comm. math. phys., 107, 535, (1986), Springer
[9] Elitzur, S.; Gross, E.; Rabinovici, E.; Seiberg, N., Nucl. phys., B283, 413, (1987)
[10] Bardakci, K.; Halpern, M.; Halpern, M.B.; Halpern, M.B.; Thorn, C.; Mandelstam, S.; Mandelstam, S., Phys. rev., Phys. rev., Phys. rev., Phys. rev., Phys. rev., D7, 3777, (1973)
[11] Green, M.B.; Schwarz, J.H.; Witten, E., Superstring theory, (1987), Cambridge University Press
[12] Goddard, P.; Kent, A.; Olive, D.; Goddard, P.; Kent, A.; Olive, D., Phys. lett., Comm. math. phys., 103, 105, (1986)
[13] Kent, A., Phys. lett., 173B, 413, (1986)
[14] Schellekens, A.; Warner, N.P., Nucl. phys., B287, 317, (1987)
[15] Gepner, D., Nucl. phys., B287, 111, (1987)
[16] Itzykson, C.; Zuber, J.B.; Cappeli, A.; Itzykson, C.; Zuber, J.B., Nucl. phys., Nucl. phys., B280 [FS18], 445, (1987)
[17] Cardy, J.L., Nucl. phys., B270 [FS16], 186, (1986)
[18] Zamolodchikov, A.B.; Fateev, V.A., Zheft, 83, (1984)
[19] M. Yu and H.B. Zheng, NBI preprint HE-86-29
[20] Gepner, D.; Qiu, Z.; Cappeli, A.; Itzykson, C.; Zuber, J.B., Nucl. phys., Saclay preprint S.ph-T/87-59, B285 [FS9], 423, (1987)
[21] Zamolodchikov, A.B., Theor. math. phys., 65, 1205, (1986)
[22] J. Cardy, private communication, to appear
[23] Goddard, P.; Olive, D., Int. J. mod. phys., A1, 303, (1986), and references therein
[24] see also ref. [10]
[25] Antoniadis, I.; Bachas, C., Nucl. phys., B278, 343, (1986)
[26] Bowcock, P.; Goddard, P., ITP Santa Barbara preprint, (1987)
[27] Redlich, A.N.; Schnitzer, H.J.; Tomboulis, E.T., Phys. lett., UCLA preprint UCLA/86/TEP/30, 167B, 315, (1986)
[28] Polyakov, A.M.; Weigmann, P.B.; Polyakov, A.M.; Weigmann, P.B.; Alvarez, O.; Schnitzer, H.J., Phys. lett., Phys. lett., Nucl. phys., Phys. lett., B193, 471, (1987)
[29] Witten, E., Comm. math. phys., 92, 455, (1984)
[30] Witten, E., Nucl. phys., B223, 422, (1983)
[31] Guadagnigni, E.; Martellini, M.; Mintchev, M., Pisa preprint IFUP-TH 7/87, (1987)
[32] Schellekens, A.N.; Warner, N.P.; Arcuri, R.C.; Gomes, J.F.; Olive, D., Phys. rev., Nucl. phys., B285 [FS19], 327, (1987)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.