zbMATH — the first resource for mathematics

Modular and conformal invariance constraints in representation theory of affine algebras. (English) Zbl 0661.17016
The basic theme of this long and detailed paper is the study of the restriction of an integrable highest weight representation \({\mathcal L}(\Lambda)\) of an affine Lie algebra \({\mathfrak g}\) to an affine subalgebra \({\mathfrak p}\). More precisely, by the coset construction [P. Goddard, A. Kent and D. Olive, Phys. Lett. B 152, 88-92 (1985; see the preceding review Zbl 0661.17015)], \({\mathcal L}(\Lambda)\) is a representation of the direct sum \({\mathfrak p}\oplus Vir\) and so decomposes as a sum \(L(\Lambda)=\oplus_{V}V\otimes M(V,\Lambda)\) over the integrable highest weight representations V of \({\mathfrak p}\), where M(V,\(\Lambda)\) is a representation of the Virasoro algebra Vir. Giving this decomposition is equivalent to giving the branching functions \(b^ V_{\Lambda}(\tau)=q^{-\pi /24}\chi_{M(V,\lambda)}(q)\) where \(q=e^{2\pi i\tau}\), z is the central charge of the Virasoro on L(\(\Lambda)\), and \(\chi_ M\) is the character of M. It is shown that the \(b^ V_{\Lambda}\) are holomorphic functions on the upper half-plane, and enjoy simple transformation properties under \(SL_ 3(O)\). In particular, they are modular functions with respect to a congruence subgroup.
The authors calculate the branching functions in several cases explicitly and study their asymptotic behaviour at the boundary. Along the way, a great deal of background information is given which makes the paper a valuable reference.
Reviewer: A.N.Pressley

17B65 Infinite-dimensional Lie (super)algebras
17B67 Kac-Moody (super)algebras; extended affine Lie algebras; toroidal Lie algebras
17B10 Representations of Lie algebras and Lie superalgebras, algebraic theory (weights)
11F03 Modular and automorphic functions
Full Text: DOI
[1] Belavin, A.A; Polyakov, A.M; Zamolodchikov, A.B, Infinite conformal symmetry in two dimensional quantum field theory, Nucl. phys. B, 241, 333-380, (1984) · Zbl 0661.17013
[2] Bernard, D, String characters from Kac-Moody automorphisms, Nucl. phys. B, 288, 628-648, (1987)
[3] Bowcock, P; Goddard, P, Virasoro algebras with central charge c < 1, (1987), preprint
[4] Cappelli, A; Itzykson, C; Zuber, J.-B, Modular invariant partition function in two dimensions, Nucl. phys. B, 280, 445-460, (1987) · Zbl 0661.17017
[5] Cappelli, A, Modular invariant partition functions of superconformal theories, Phys. lett. B, 185, 82-86, (1987)
[6] Cardy, J, Operator content of two-dimensional conformal invariant theories, Nucl. phys. B, 270, 186-204, (1986) · Zbl 0689.17016
[7] Feigin, B.L; Fuchs, D.B, Verma modules over the Virasoro algebra, (), 230-245 · Zbl 0549.17010
[8] Frenkel, I.B; Kac, V.G, Basic representations of affine Lie algebras and dual resonance models, Invent. math., 62, 23-66, (1980) · Zbl 0493.17010
[9] Friedan, D; Qiu, Z; Shenker, S, Conformal invariance, unitarity and two dimensional critical exponents, Math. sci. res. inst. publ., Details of the non-unitarity proof, Comm. math. phys., 107, 535-542, (1986)
[10] Friedan, D; Qiu, Z; Shenker, S, Superconformal invariance in two dimensions and the tricritical Ising model, Phys. lett. B., 151, 37-43, (1985)
[11] Gepner, D, On the spectrum of 2D conformal field theories, Nucl. phys. B, 287, 111-130, (1987)
[12] Gepner, D; Witten, E, String theory on group manifold, Nucl. phys. B, 278, 493-520, (1986)
[13] Goddard, P; Kent, A; Olive, D, Virasoro algebras and coset space models, Phys. lett. B, 152, 88-93, (1985) · Zbl 0661.17015
[14] Goddard, P; Kent, A; Olive, D, Unitary representations of the Virasoro and super-Virasoro algebras, Comm. math. phys., 103, 105-119, (1986) · Zbl 0588.17014
[15] Goddard, P; Nahm, W; Olive, D, Symmetric spaces, Sugawara’s energy momentum tensor in two dimensions and free fermions, Phys. lett. B, 160, 111-116, (1985) · Zbl 1177.81109
[16] Itzykson, C; Zuber, J.-B, Two dimensional conformal invariant theories on a torus, Nucl. phys. B, 275, 580-600, (1986)
[17] Jimbo, M; Miwa, T, Irreducible decomposition of fundamental modules for A(1)l and C(1)l, and Hecke modular forms, Adv. stud. pure math., 4, 97-119, (1984)
[18] Jimbo, M; Miwa, T, On a duality of branching rules for affine Lie algebras, Adv. stud. pure math., 6, 17-65, (1985)
[19] Jimbo, M; Miwa, T; Okado, M, Solvable lattice models with broken \(Z\)_N-symmetry and Hecke’s indefinite modular forms, Nucl. phys. B, 275, 517-545, (1986)
[20] Kac, V.G, Infinite-dimensional Lie algebras and Dedekind’s η-function, Funct. anal. appl., 8, 68-70, (1974) · Zbl 0299.17005
[21] Kac, V.G, Infinite-dimensional algebras, Dedekind’s η-function, classical Möbius function and the very strange formula, Adv. in math., An elucidation…, Adv. in math., 35, 264-273, (1980) · Zbl 0431.17009
[22] Kac, V.G, Contravariant form for infinite-dimensional Lie algebras and superalgebras, (), 117-126 · Zbl 0574.17002
[23] Kac, V.G, Infinite-dimensional Lie algebras, (), 2nd ed.: Cambridge Univ. Press, London/New York, 1985 · Zbl 0581.17009
[24] Kac, V.G; Peterson, D.H, Affine Lie algebras and Hecke modular forms, Bull. amer. math. soc., 3, 1057-1061, (1980) · Zbl 0457.17007
[25] Kac, V.G; Peterson, D.H, Spin and wedge representations of infinite dimensional Lie algebras and groups, (), 3308-3312 · Zbl 0469.22016
[26] Kac, V.G; Peterson, D.H, Infinite dimensional Lie algebras, theta-functions and modular forms, Adv. in math., 53, 125-264, (1984) · Zbl 0584.17007
[27] Kac, V.G; Todorov, I.T, Superconformal current algebras and their unitary representations, Comm. math. phys., 102, 337-347, (1985) · Zbl 0599.17011
[28] Kac, V.G; Wakimoto, M, Unitarizable highest weight representations of the Virasoro, Neveu-Schwarz and Ramond algebras, (), 345-371
[29] Kac, V.G; Moody, R.V; Wakimoto, M, On E10, (1988), preprint · Zbl 0674.17007
[30] Moreno, C.J; Rocha-Caridi, A, Rademacher-type formulas for the multiplicities of irreducible highest weight representations of affine Lie algebras, Bull. amer. math. soc., 16, 292-295, (1987) · Zbl 0619.17013
[31] Schellekens, A.N; Warner, N.P, Conformal subalgebras of Kac-Moody algebras, (1986), preprint
[32] Schellekens, A.N; Warner, N.P, Anomalies and modular invariance in string theory, Phys. rev. D, 24, 3092-4000, (1986)
[33] Schoeneberg, B, Elliptic modular functions, (1973), Springer-Verlag New York/Berlin · Zbl 0285.10016
[34] Serre, J.-P, Cours d’arithmetique, (1970), Presses Univ. France Paris · Zbl 0225.12002
[35] Serre, J.-P, Modular forms of weight one and Galois representations, ()
[36] Serre, J.-P; Stark, H, Modular forms of weight \(12\), (), 27-68
[37] Sugawara, H, A field theory of currents, Phys. rev., 170, 1659-1662, (1968)
[38] Tsuchiya, A; Kanie, Y, Unitary representations of the Virasoro algebra, Duke math. J., 53, 1013-1046, (1986) · Zbl 0611.17005
[39] Tsuchiya, A; Kanie, Y, Unitary representations of the Virasoro algebra and branching law of representations of affine Lie algebras, (1987), preprint · Zbl 0642.17008
[40] Wakimoto, M, Affine Lie algebras and the Virasoro algebra, I, Japan. J. math., 12, 379-400, (1986) · Zbl 0614.17010
[41] Yamagishi, K, Level two representations of Kac-Moody algebra E(1)8 and the uniqueness of heterotic type strings, (1986), preprint
[42] Kac, V.G; Niculescu-Sanielevici, M, Decompositions of representations of exceptional affine algebras with respect to conformal subalgebras, Phys. rev. D, 37, 2231-2237, (1988)
[43] Capelli, A; Itzykson, C; Zuber, J.B, The A-D-E classification of minimal and A(1)1 conformal invariant theories, Comm. math. physics, 113, 1-26, (1987) · Zbl 0639.17008
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.