Aizenman, Michael; Fernández, Roberto Critical exponents for long-range interactions. (English) Zbl 0658.60136 Lett. Math. Phys. 16, No. 1, 39-49 (1988). The contribution of long-range interactions to an “effective dimension” of a model of statistical mechanics is investigated. The authors give a number of rigorous results on critical exponents of such models, including Griffiths-Simon spin models. The analytical results are compared with earlier renormalization-group predictions. Reviewer: V.Chulaevski Cited in 12 Documents MSC: 60K35 Interacting random processes; statistical mechanics type models; percolation theory 82B05 Classical equilibrium statistical mechanics (general) Keywords:long-range interactions; statistical mechanics; critical exponents; Griffiths-Simon spin models; renormalization-group predictions PDF BibTeX XML Cite \textit{M. Aizenman} and \textit{R. Fernández}, Lett. Math. Phys. 16, No. 1, 39--49 (1988; Zbl 0658.60136) Full Text: DOI References: [1] FisherM. E., MaS., and NickelB. G., Phys. Rev. Lett. 29, 917-920 (1972). · doi:10.1103/PhysRevLett.29.917 [2] PitzerK. S., ConceicaoM., deLimaP., and SchriberD. R., J. Phys. Chem. 89, 1854-1855 (1985). · doi:10.1021/j100256a006 [3] Fr?hlichJ., SimonB., and SpencerT., Commun. Math. Phys. 50, 79-85 (1976). · doi:10.1007/BF01608557 [4] GriffithsR. B., J. Math. Phys. 10, 1559-1656 (1969). Simon, B. and Griffiths, R. B., Commun. Math. Phys. 33, 145-164 (1973). · doi:10.1063/1.1665005 [5] LeeT. D. and YangC. N., Phys. Rev. 87, 410-419 (1952). · Zbl 0048.43401 · doi:10.1103/PhysRev.87.410 [6] AizenmanM. and Fern?ndezR., J. Stat. Phys. 44, 393-454 (1986). · Zbl 0629.60106 · doi:10.1007/BF01011304 [7] AizenmanM., Phys. Rev. Lett. 54, 839-842 (1985). · doi:10.1103/PhysRevLett.54.839 [8] AizenmanM., BarskyD. J., and Fern?ndezR., J. Stat. Phys. 47, 343-374 (1987). · doi:10.1007/BF01007515 [9] GriffithsR. B., J. Math. Phys. 8, 478-484 (1967). · doi:10.1063/1.1705219 [10] SimonB., Commun. Math. Phys. 77, 111-126 (1980). · doi:10.1007/BF01982711 [11] AizenmanM., in A.Jaffe, D.Sasz, and D.Petz (eds.), Statistical Mechanics and Dynamical Systems (Proceedings Kosheg 1984), Birkhauser, Boston, 1985. [12] GlimmJ. and JaffeA., Phys. Rev. D10, 536 (1974). [13] AizenmanM. and GrahamR., Nucl. Phys. B225 [FS9], 261-288 (1983). · doi:10.1016/0550-3213(83)90053-6 [14] Fr?hlich, J. and Sokal, A. D., The random walk representation of classical spin systems and correlation inequalities. III. Nonzero magnetic field, in preparation. [15] SokalA. D., Phys. Lett. 71A, 451-453 (1979). [16] SokalA. D., Ann. Inst. Henri Poincar? A37, 317 (1982). [17] AizenmanM., Phys. Rev. Lett. 47, 1 (1981); Commun. Math. Phys. 86, 1-48 (1982). · doi:10.1103/PhysRevLett.47.1 [18] Fr?hlich, Nucl. Phys. B20 [FS4], 281 (1982). · doi:10.1016/0550-3213(82)90088-8 [19] Fr?hlichJ., IsraelR., LiebE. H., and SimonB., Commun. Math. Phys. 62, 1-34 (1978). · doi:10.1007/BF01940327 [20] FortuinC., KasteleynP., and GinibreJ., Commun. Math. Phys. 22, 89 (1971). · Zbl 0346.06011 · doi:10.1007/BF01651330 [21] GriffithsR. B., J. Math. Phys. 8, 484-489 (1967). · doi:10.1063/1.1705220 [22] GriffithsR. B., HurstC. A., and ShermanS., J. Math. Phys. 11, 790-795 (1970). · doi:10.1063/1.1665211 [23] AizenmanM. and BarskyD. J., Commun. Math. Phys. 108, 489-526 (1987). · Zbl 0618.60098 · doi:10.1007/BF01212322 [24] Newman, C. M., Appendix to contribution in Proceedings of the SIAM workshop on multiphase flow, G. Papanicolau (ed.), to appear. [25] LebowitzJ. L., Commun. Math. Phys. 35, 87 (1974). · doi:10.1007/BF01646608 [26] McBryanO. and RosenJ., Commun. Math. Phys. 51, 97 (1967). · doi:10.1007/BF01609341 [27] AizenmanM. and NewmanC. M., J. Stat. Phys. 36, 107-143 (1984). · Zbl 0586.60096 · doi:10.1007/BF01015729 [28] ChayesJ. T. and ChayesL., Phys. Rev. Lett. 56, 1619-1622 (1986). · doi:10.1103/PhysRevLett.56.1619 [29] AizenmanM. and NewmanC. M., Commun. Math. Phys. 107, 611-644 (1986). Aizenman, M., Chayes, J. T., Chayes, L., and Newman, C. M., J. Stat. Phys. (1988); Imbrie, J. Z. and Newman, M., submitted to Commun. Math. Phys. · Zbl 0613.60097 · doi:10.1007/BF01205489 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.