×

zbMATH — the first resource for mathematics

A note on vortex shedding from axisymmetric bluff bodies. (English) Zbl 0657.76041
Following an approach developed for plane flows the author investigated the linear viscous stability of an incompressible axisymmetric wake using the parallel flow assumption. A two-parameter model of wake-flow profiles is introduced which allows to vary the depth of the wake and the ratio of mixing-layer thickness to wake width. Using the Briggs-Bers criterion to distinguish between absolute and convective instability only the first helical mode is found to be absolutely unstable in the near wake. In analogy to the van Kármán vortex shedding behind plane two- dimensional bluff bodies the author proposes that this might be the reason for the large-scale helical vortex shedding observed behind spheres.
Reviewer: W.Koch

MSC:
76E05 Parallel shear flows in hydrodynamic stability
76D25 Wakes and jets
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Monkewitz, AIAA paper 1 pp 165– (1986)
[2] DOI: 10.1016/S0889-9746(87)90323-9 · Zbl 0619.76052 · doi:10.1016/S0889-9746(87)90323-9
[3] Monkewitz, Phys. Fluids 29 pp 861– (1988)
[4] Fail, Aero. Res. Council R and M 30 pp 2303– (1959)
[5] DOI: 10.1063/1.866118 · doi:10.1063/1.866118
[6] DOI: 10.1103/PhysRevLett.60.25 · doi:10.1103/PhysRevLett.60.25
[7] Carmody, J. Basic Engng 86 pp 869– (1964) · doi:10.1115/1.3655980
[8] Torobin, Can. J. Chem. Engng 37 pp 167– (1959) · doi:10.1002/cjce.5450370501
[9] Bechert, Z. Flugwiss, Weltraumforschung 9 pp 356– (1985)
[10] DOI: 10.1017/S0022112078000580 · doi:10.1017/S0022112078000580
[11] DOI: 10.1017/S0022112074000644 · doi:10.1017/S0022112074000644
[12] DOI: 10.1017/S0022112072000874 · doi:10.1017/S0022112072000874
[13] DOI: 10.1017/S002211208300333X · doi:10.1017/S002211208300333X
[14] Scholz, Res. rep. 26 pp 237– (1986)
[15] DOI: 10.1007/BF01590812 · Zbl 0392.76028 · doi:10.1007/BF01590812
[16] Michalke, Z. Flugwiss 19 pp 319– (1971)
[17] DOI: 10.1017/S0022112065001520 · doi:10.1017/S0022112065001520
[18] Mathis, J. Phys. Lett. 45 pp 350– (1984)
[19] Mair, Aero Q 16 pp 350– (1965) · doi:10.1017/S0001925900003589
[20] DOI: 10.1016/0022-460X(85)90445-6 · doi:10.1016/0022-460X(85)90445-6
[21] DOI: 10.1017/S0022112084000434 · doi:10.1017/S0022112084000434
[22] DOI: 10.1017/S0022112085003147 · Zbl 0588.76067 · doi:10.1017/S0022112085003147
[23] DOI: 10.1017/S0022112066001216 · doi:10.1017/S0022112066001216
[24] Roshko, NACA Tech. Note 9 pp 1433– (1953)
[25] Riddhagni, AIAA J. 9 pp 1433– (1971)
[26] DOI: 10.1175/1520-0469(1984)041 2.0.CO;2 · doi:10.1175/1520-0469(1984)041 · doi:2.0.CO;2
[27] DOI: 10.1063/1.861854 · doi:10.1063/1.861854
[28] DOI: 10.1017/S0022112076002231 · Zbl 0358.76036 · doi:10.1017/S0022112076002231
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.