zbMATH — the first resource for mathematics

A spectral-Tau approximation for the Stokes and Navier-Stokes equations. (English) Zbl 0657.76031
A new spectral-Tau formulation for the Stokes problem is introduced and analyzed. The pressure approximation of the resulting system does not contain any spurious modes. Moreover, the scheme is easy to implement numerically. The spectral convergence of the scheme is proved and is affirmed by numerical results.

76D05 Navier-Stokes equations for incompressible viscous fluids
76D07 Stokes and related (Oseen, etc.) flows
65N35 Spectral, collocation and related methods for boundary value problems involving PDEs
Full Text: DOI EuDML
[1] K. ARROW, L. HURWICZ & H. UZAWA, Studies in non-linear programming; Stanford univ. Press, Stanford (1958). Zbl0091.16002 MR108399 · Zbl 0091.16002
[2] F. BREZZI, On the existence, uniqueness and approximation of saddle-point problems arising from Lagrange multipliers; Raior. Anal. Numer. 8-R2 129-151 (1974). Zbl0338.90047 MR365287 · Zbl 0338.90047 · eudml:193255
[3] C. BERNARDI, C. CANUTO & Y. MADAY, Generalized inf-sup condition for Chebychev approximation of the Navier-Stokes equations; IAN Report, N. 533, Pavia, Italy (1986). · Zbl 0612.49004
[4] C. BERNARDI, Y. MADAY & B. MÉTIVET, Spectral approximation of the periodic non-periodic Navier-Stokes equations; to appear in Numer. Math. Zbl0583.65085 MR914344 · Zbl 0583.65085 · doi:10.1007/BF01400175 · eudml:133219
[5] C. BERNARDI, Y. MADAY & B. MÉTIVET, Calcul de la pression dans la résolution spectrale des problèmes de Sotkes; La Recherche Aérospatiale, No. 1, 1-21 (1987). Zbl0642.76037 MR904608 · Zbl 0642.76037
[6] C. CANUTO & A. QUARTERONI, Spectral & pseudo-spectral methods for parabolic problems with non-periodic boudary conditions; Calcolo, vol. XVIII, fasi. III (1981). Zbl0485.65078 MR647825 · Zbl 0485.65078 · doi:10.1007/BF02576357
[7] C. CANUTO & A. QUARTERONI, Approximation results for orthogonal polynomials in Sobolev spaces; Math. Comp. vol. 38, No. 157, 67-86 (1982). Zbl0567.41008 MR637287 · Zbl 0567.41008 · doi:10.2307/2007465
[8] U. EHRENSTEIN, Méthodes spectrales de résolution des équations de Stokes et de Navier-Stokes. Application à des écoulements de convection double diffusive; Thèse, univ. de Nice (1986).
[9] V. GIRAULT & P. A. RAVIART, Finite element approximation of the Navier-Stokes equations; Springer-Verlag (1986). Zbl0413.65081 MR548867 · Zbl 0413.65081 · doi:10.1007/BFb0063447
[10] P. HALDENWANG, G. LABROSSE, S. ABBOUDI & M. DEVILLE, Chebychev 3-D and 2-D pseudo-spectral solver for the Helmholtz equations; J. Comp. Phy. vol. 55, 115-128 (1984). Zbl0544.65071 MR757426 · Zbl 0544.65071 · doi:10.1016/0021-9991(84)90018-4
[11] D. B. HAIDVOGEL & T. ZANG, The accurate solution of Poisson equation in Chebychev polynomials; J. Comp. Phy. vol. 30, 167-180 (1979). Zbl0397.65077 MR528198 · Zbl 0397.65077 · doi:10.1016/0021-9991(79)90097-4
[12] L. KLEISER & SCHUMANN, Treatment of incomppressibility and boundary conditions in 3-D numerical spectral simulation of plane channel flow; Proc. of the 3th GAMM conference on numer. methods in fluid mechanics, Viewig-Verlag Braunschweig, 165-173 (1980). Zbl0463.76020 · Zbl 0463.76020
[13] G. SACCHI LANDERIANI, Spectral Tau approximation of the two dimensional Stokes problem; IAN Report, No. 528, Pavia, Italy (1986). Zbl0629.76037 · Zbl 0629.76037 · doi:10.1007/BF01395818 · eudml:133260
[14] R. TEMAM, Navier-Stokes equations. Theory and numerical analysis; North-Holland (1979). Zbl0426.35003 · Zbl 0426.35003
[15] L. B. ZHANG, Thèse, univ. de Paris-sud (1987).
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.