zbMATH — the first resource for mathematics

Error of Runge-Kutta methods for stiff problems studied via differential algebraic equations. (English) Zbl 0657.65093
This paper deals with the error analysis of implicit Runge-Kutta methods when they are applied to a special class of stiff differential systems. The systems under consideration, which arise in singular perturbations, have the form: \(y'=f(y,z)\), \((1)\quad \epsilon z'=g(y,z)\), where \(\epsilon\) \((>0)\) is a small parameter. The authors assume initial conditions such that (1) admits a unique solution with derivatives up to a sufficiently high order which are bounded independently of \(\epsilon\). Also f and g are sufficiently smooth and the logarithmic norm of \(g_ z\) is \(\leq -1.\)
By developping the exact and the approximate solutions in powers of \(\epsilon\) and using some results of Runge-Kutta methods applied to differential-algebraic systems, the authors have obtained asymptotic estimates for several classes of Runge-Kutta methods. These estimates have been checked numerically with the Van der Pol equation. Finally, it must be remarked that while the error analysis developed by R. Frank, J. Schneid and C. W. Ueberhuber [SIAM J. Numer. Anal. 22, 515-534 (1985; Zbl 0577.65056)] is concerned with more general stiff systems, the error bounds obtained here are generally sharper.
Reviewer: M.Calvo

65L05 Numerical methods for initial value problems involving ordinary differential equations
65L20 Stability and convergence of numerical methods for ordinary differential equations
65G50 Roundoff error
34A34 Nonlinear ordinary differential equations and systems
34E15 Singular perturbations for ordinary differential equations
Full Text: DOI
[1] R. C. Aiken,Stiff Computation, Oxford University Press, New York-Oxford, 1985. · Zbl 0607.65041
[2] R. Alexander,Diagonally implicit Runge-Kutta methods for stiff O.D.E.’s, SIAM J. Numer. Anal., Vol. 14 (1977), 1006–1021. · Zbl 0374.65038
[3] K. E. Brenan and L. R. Petzold,The numerical solution of higher index differential/algebraic equations by implicit Runge-Kutta methods, Preprint UCRL-95905, Lawrence Livermore National Laboratory, 1986.
[4] K. Burrage and W. H. Hundsdorfer,The order of B-convergence of algebraically stable Runge-Kutta methods, BIT, Vol. 27 (1987), 62–71. · Zbl 0629.65075
[5] K. Burrage, W. H. Hundsdorfer and J. G. Verwer,A study of B-convergence of Runge-Kutta methods, Computing, Vol. 36 (1986), 17–34. · Zbl 0572.65053
[6] M. Crouzeix and P. A. Raviart,Approximation des problèmes d’évolution, Unpublished Lecture Notes, Université de Rennes, 1980.
[7] K. Dekker and J. G. Verwer,Stability of Runge-Kutta Methods for Stiff Non-linear Differential Equations, North-Holland, Amsterdam - New York - Oxford, 1984. · Zbl 0571.65057
[8] P. Deuflhard, E. Hairer and J. Zugck,One-step and extrapolation methods for differential-algebraic systems, Numer. Math., Vol. 51 (1987), 501–516. · Zbl 0635.65083
[9] R. Frank, J. Schneid and C. W. Ueberhuber,Order results for implicit Runge-Kutta methods applied to stiff systems, SIAM J. Numer. Anal., Vol. 22 (1985), 515–534. · Zbl 0577.65056
[10] C. W. Gear,Differential-algebraic equation index transformations, SIAM J. Sci. Stat. Comp., Vol. 9 (1988), 39–47. · Zbl 0637.65072
[11] E. Griepentrog and R. März,Differential-algebraic Equations and their Numerical Treatment, Teubner-Texte zur Mathematik, Band 88, 1986. · Zbl 0629.65080
[12] E. Hairer,A note on D-stability, BIT, Vol. 24 (1984), 383–386. · Zbl 0571.65059
[13] E. Hairer, G. Badner and Ch. Lubich,On the stability of semi-implicit methods for ordinary differential equations, BIT, Vol. 22 (1982), 211–232. · Zbl 0489.65046
[14] E. Hairer and Ch. Lubich,Extrapolation at stiff differential equations, Numer. Math., Vol. 52 (1988), 377–400. · Zbl 0643.65034
[15] E. Hairer and Ch. Lubich,On extrapolation methods for stiff and differential algebraic equations. In:Numerical Treatment of Differential Equations, ed. by K. Strehmel, Teubner-Texte zur Mathematik, Band 104, 1988. · Zbl 0676.65078
[16] E. Hairer, Ch. Lubich and M. Roche. In preparation.
[17] F. Hoppensteadt,Properties of solutions of ordinary differential equations with a small parameter, Commun. Pure Appl. Math., Vol. 24 (1971), 807–840. · Zbl 0235.34120
[18] H. O. Kreiss,Problems with different time scales. In:Recent Advances in Numerical Analysis (C. de Boor, G. H. Golub, eds.), Academic Press, 1978.
[19] W. L. Miranker,Numerical Methods for Stiff Equations, D. Reidel Publishing Company, Dordrecht, Holland, 1981. · Zbl 0454.65051
[20] J. von Neumann, Eine Spektraltheorie für Operatoren eines unitären Raumes, Math. Nachr., Vol. 4 (1951), 258–281. · Zbl 0042.12301
[21] O. Nevanlinna,Matrix valued versions of a result of von Neumann with an application to time discretization, J. Comput. Appl. Math., Vol. 12–13 (1985), 475–489. · Zbl 0573.65036
[22] S. P. Nørsett and P. Thomsen,Local error control in SDIRK-methods, BIT, Vol. 26 (1986), 100–113. · Zbl 0627.65082
[23] R. E. O’Malley,Introduction to Singular Perturbations, Academic Press, New York and London, 1974.
[24] J. M. Ortega and W. C. Rheinboldt,Iterative Solution of Nonlinear Equations in Several Variables, Academic Press, New York - San Francisco - London, 1970. · Zbl 0241.65046
[25] L. R. Petzold,Order results for implicit Runge-Kutta methods applied to differential/algebraic systems, SIAM J. Numer. Anal., Vol. 23 (1986), 837–852. · Zbl 0635.65084
[26] A. Prothero and A. Robinson,On the stability and accuracy of one-step methods for solving stiff systems of ordinary differential equations, Math. Comput., Vol. 28 (1974), 145–162. · Zbl 0309.65034
[27] M. Roche,Runge-Kutta methods for differential algebraic equations. To appear in SIAM J. Numer. Anal. · Zbl 0674.65040
[28] A. N. Tikhonov, A. B. Vasil’eva and A. G. Sveshnikov,Differential Equations, Springer Verlag, Berlin - Heidelberg, 1985.
[29] M. van Veldhuizen,D-stability, SIAM J. Numer. Anal., Vol. 18 (1981), 45–64. · Zbl 0473.65048
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.