×

zbMATH — the first resource for mathematics

Monopoles, non-linear \(\sigma\) models, and two-fold loop spaces. (English) Zbl 0656.58049
The authors study the topology of the moduli space of SU(2) monopoles associated with the Yang-Mills-Higgs and Bogomol’nyi equation. Further they consider some non-linear models of quantum field theory.
Reviewer: N.Jacob

MSC:
58Z05 Applications of global analysis to the sciences
81Q99 General mathematical topics and methods in quantum theory
55P35 Loop spaces
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Adams, J. F.: Infinite loop spaces. Ann. Math. Studies 90, Princeton, NJ: Princeton University Press 1978 · Zbl 0398.55008
[2] Araki, S., Kudo, T.: Topology ofH n -spaces andH-squaring operations. Mem. Fac. Sci. Ky?sy? Univ. Ser. A 85-120 (1956)
[3] Atiyah, M. F.: Instantons in two and four dimensions. Commun. Math. Phys.93, 437-451 (1984) · Zbl 0564.58040 · doi:10.1007/BF01212288
[4] Atiyah, M. F.: Magnetic monopoles on hyperbolic space. Proc. Int. Coll. on Vector Bundles, Tata Institute, Bombay 1984
[5] Atiyah, M. F., Drinfeld, V. G., Hitchin, N. J., Manin, Y. I.: Construction of instantons. Phys. Lett.65, A 185-187 (1978) · Zbl 0424.14004
[6] Atiyah, M. F., Hitchin, N. J.: Low energy scattering of non-abelian monopoles. Phys. Lett.107A(1), 21-25 (1985) · Zbl 1177.53069
[7] Atiyah, M. F., Jones, J. D.: Topological aspects of Yang-Mills theory. Commun. Math. Phys.61, 97-118 (1978) · Zbl 0387.55009 · doi:10.1007/BF01609489
[8] Boardman, J. M., Vogt, R. M.: Homotopy invariant algebraic structures on topological spaces. Lecture Notes in Mathematics, Vol.347. Berlin, Heidelberg, New York: Springer 1973 · Zbl 0285.55012
[9] Bogomol’nyi, E. B.: The stability of classical solutions. Sov. J. Nucl. Phys.24, 449 (1976)
[10] Boyer, C. P., Mann, B. M.: Homology operations on instantons. J. Differ. Geom. (to appear) · Zbl 0666.55003
[11] Boyer, C. P., Mann, B. M.: Instantons and homotopy. To appear in Proc. Int. Conf. Homotopy Theory, Arcata (1986) · Zbl 0685.58037
[12] Browder, W.: Homology operations and loop spaces, Ill. J. Math.4, 347-357 (1960) · Zbl 0107.40404
[13] Cohen, F. R., Lada, T. J., May, J. P.: The homology of iterated loop spaces. Lecture Notes in Mathematics, Vol.533. Berlin, Heidelberg, New York: Springer 1976 · Zbl 0334.55009
[14] Corrigan E., Goddard, P.: A 4n-monopole solution with 4n?1 degrees of freedom. Commun. Math. Phys.80, 575-587 (1981) · doi:10.1007/BF01941665
[15] Din, A. M., Zakrzewski, W. J.: General classical solutions in theCP n?1 model. Nucl. Phys.B174, 397-406 (1980) · doi:10.1016/0550-3213(80)90291-6
[16] Din, A. M., Zakrzewski, W. J.: Properties of the general classicalCP n?1 model. Lett. Math. Phys.5, 419-422 (1980)
[17] Donaldson, S. K.: Instantons and geometric invariant theory. Commun. Math. Phys.93, 453-460 (1984) · Zbl 0581.14008 · doi:10.1007/BF01212289
[18] Donaldson, S. K.: Nahm’s equations and the classification of monopoles. Commun. Math. Phys.96, 387-407 (1984) · Zbl 0603.58042 · doi:10.1007/BF01214583
[19] Donaldson, S. K.: The Yang-Mills equations on Euclidean space. Ann. of Oberwolfach 1984, Birkh?user, pp. 93-109
[20] Dyer, E., Lashof, R. K.: Homology of iterated loop spaces. Am. J. Math.84, 35-88 (1962) · Zbl 0119.18206 · doi:10.2307/2372804
[21] Eells, J., Wood, J. C.: Restrictions on harmonic maps of surfaces. Topology,17, 263-266 (1976) · Zbl 0328.58008 · doi:10.1016/0040-9383(76)90042-2
[22] Eells, J., Wood, J. C.: Harmonic maps form surfaces to complex projective spaces. Adv. Math.49, 217-263 (1983) · Zbl 0528.58007 · doi:10.1016/0001-8708(83)90062-2
[23] Groisser, D.: Integrality of the monopole number inSU(2) Yang-Mills-Higgs theory onR 3. Commun. Math. Phys.93, 367-378 (1984) · Zbl 0564.58039 · doi:10.1007/BF01258535
[24] Hitchin, N. J.: Monopoles and geodesics. Commun. Math. Phys.83, 579-602 (1982) · Zbl 0502.58017 · doi:10.1007/BF01208717
[25] Hitchin, N. J.: On the construction of monopoles. Commun. Math. Phys.89, 145-190 (1983) · Zbl 0517.58014 · doi:10.1007/BF01211826
[26] Hurtubise, J.: Monopoles and rational maps: A note on a theorem of Donaldson. Commun. Math. Phys.100, 191-196 (1985) · Zbl 0591.58037 · doi:10.1007/BF01212447
[27] Jaffe, A., Taubes, C. H.: Vortices and Monopoles. Boston: Birkh?user 1980 · Zbl 0457.53034
[28] Lawson, H. B.: Algebraic cycles and homotopy theory. Preprint (1986), S.U.N.Y. Stony Brook
[29] Lawson, H. B.: The topological structure of the space of algebraic varietics. Bull. Am. Math. Soc.17, 326-332 (1987) · Zbl 0686.14045 · doi:10.1090/S0273-0979-1987-15578-9
[30] Massera, J. L., Sch?ffer, J. J.: Linear differential equations and function spaces. New York: Academic Press 1966 · Zbl 0243.34107
[31] May, J. P.: The geometry of iterated loop spaces. Lecture Notes in Mathematics, Vol.271. Berlin, Heidelberg, New York: Springer 1972 · Zbl 0244.55009
[32] Nahm, W.: The algebraic geometry of multimonopoles. Lecture Notes in Physics, Vol.180. Berlin, Heidelberg, New York: Springer 1983, pp. 456-466
[33] Prasad, M. K., Sommerfield, C.: Exact classical solutions for the ’t Hooft monopole and the Julia-Zee Dyon. Phys. Rev. Lett.35, 760 (1975) · doi:10.1103/PhysRevLett.35.760
[34] Segal, G.: Configuration spaces and iterated loop-spaces. Invent. Math.21, 213-221 (1973) · Zbl 0267.55020 · doi:10.1007/BF01390197
[35] Segal, G.: The topology of rational functions. Acta Math.143, 39-72 (1979) · Zbl 0427.55006 · doi:10.1007/BF02392088
[36] Taubes, C. H.: The structure of static Euclidean gauge fields. Harvard Univ. Ph.D. thesis (1980) · Zbl 0457.53034
[37] Taubes, C. H.: The existence of a non-minimal solution to theSU(2) Yang-Mills-Higgs equations onR 3. Part I, Commun. Math. Phys.86, 257-298 (1982); Part II, Commun. Phys.86, 299 (1982) · Zbl 0514.58016 · doi:10.1007/BF01206014
[38] Taubes, C. H.: Path-connected Yang-Mills moduli spaces. J. Differ. Geom.19, 337-392 (1984) · Zbl 0551.53040
[39] Taubes, C. H.: Monopoles and maps fromS 2 toS 2; the topology of the configuration space. Commun. Math. Phys.95, 345 (1984) · Zbl 0594.58053 · doi:10.1007/BF01212403
[40] Taubes, C. H.: Min-Max theory for the Yang-Mills-Higgs equations. Commun. Math. Phys.97, 473 (1985) · Zbl 0585.58016 · doi:10.1007/BF01221215
[41] Taubes, C. H.: The stable topology of self-dual moduli spaces. Preprint (1986), Harvard University
[42] Ward, R.: A Yang-Mills-Higgs monopole of charge 2. Commun. Math. Phys.79, 317 (1981) · doi:10.1007/BF01208497
[43] Woo, G.: Pseudo-particle configurations in two-dimensional ferromagnets. J. Math. Phys.18, 1264 (1977) · doi:10.1063/1.523400
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.