×

zbMATH — the first resource for mathematics

Crabgrass, measles, and gypsy moths: An introduction to modern probability. (English) Zbl 0653.60095
This paper aims at explaining five models of interacting particle systems: Richardson’s model, percolation, a model for the spread of measles (or forest firesö), the contact process (gypsy moths), and a “crabgrass model”. The author collects several asymptotic results for these models and discusses some of the techniques which can be used to prove these results. A very condensed version of this paper [Math. Intell. 10, No.2, 37-47 (1988; Zbl 0639.60095)] also contains several computer pictures.
Reviewer: K.Schürger

MSC:
60K35 Interacting random processes; statistical mechanics type models; percolation theory
60-01 Introductory exposition (textbooks, tutorial papers, etc.) pertaining to probability theory
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] M. Aizenman, J. T. Chayes, L. Chayes, J. Fröhlich, and L. Russo, On a sharp transition from area law to perimeter law in a system of random surfaces, Comm. Math. Phys. 92 (1983), no. 1, 19 – 69. · Zbl 0529.60099
[2] J. D. Biggins, The asymptotic shape of the branching random walk, Advances in Appl. Probability 10 (1978), no. 1, 62 – 84. · Zbl 0383.60078
[3] M. Bramson, R. Durrett, and G. Swindle, Statistical mechanics of crabgrass, Ann. Probab. 17 (1989), no. 2, 444 – 481. · Zbl 0682.60090
[4] J. Theodore Cox and Richard Durrett, Some limit theorems for percolation processes with necessary and sufficient conditions, Ann. Probab. 9 (1981), no. 4, 583 – 603. · Zbl 0462.60012
[5] J. T. Cox and Richard Durrett, Limit theorems for the spread of epidemics and forest fires, Stochastic Process. Appl. 30 (1988), no. 2, 171 – 191. · Zbl 0667.92016
[6] Richard Durrett, On the growth of one-dimensional contact processes, Ann. Probab. 8 (1980), no. 5, 890 – 907. · Zbl 0457.60082
[7] Richard Durrett, Oriented percolation in two dimensions, Ann. Probab. 12 (1984), no. 4, 999 – 1040. · Zbl 0567.60095
[8] Richard Durrett , Particle systems, random media and large deviations, Contemporary Mathematics, vol. 41, American Mathematical Society, Providence, RI, 1985. · Zbl 0562.00006
[9] Richard Durrett and David Griffeath, Contact processes in several dimensions, Z. Wahrsch. Verw. Gebiete 59 (1982), no. 4, 535 – 552. · Zbl 0483.60089
[10] Richard Durrett and David Griffeath, Supercritical contact processes on \?, Ann. Probab. 11 (1983), no. 1, 1 – 15. · Zbl 0508.60080
[11] Richard Durrett and Thomas M. Liggett, The shape of the limit set in Richardson’s growth model, Ann. Probab. 9 (1981), no. 2, 186 – 193. · Zbl 0457.60083
[12] R. Durrett and R. H. Schonmann, Stochastic growth models, Percolation theory and ergodic theory of infinite particle systems (Minneapolis, Minn., 1984 – 1985) IMA Vol. Math. Appl., vol. 8, Springer, New York, 1987, pp. 85 – 119. · Zbl 0628.60102
[13] Harry Kesten, Percolation theory for mathematicians, Progress in Probability and Statistics, vol. 2, Birkhäuser, Boston, Mass., 1982. · Zbl 0522.60097
[14] Harry Kesten, Aspects of first passage percolation, École d’été de probabilités de Saint-Flour, XIV — 1984, Lecture Notes in Math., vol. 1180, Springer, Berlin, 1986, pp. 125 – 264. · Zbl 0602.60098
[15] Harry Kesten, Surfaces with minimal random weights and maximal flows: a higher-dimensional version of first-passage percolation, Illinois J. Math. 31 (1987), no. 1, 99 – 166. · Zbl 0591.60096
[16] Harry Kesten, Percolation theory and first-passage percolation, Ann. Probab. 15 (1987), no. 4, 1231 – 1271. · Zbl 0629.60103
[17] J. F. C. Kingman, Subadditive ergodic theory, Ann. Probability 1 (1973), 883 – 909. With discussion by D. L. Burkholder, Daryl Daley, H. Kesten, P. Ney, Frank Spitzer and J. M. Hammersley, and a reply by the author. · Zbl 0311.60018
[18] Thomas M. Liggett, An improved subadditive ergodic theorem, Ann. Probab. 13 (1985), no. 4, 1279 – 1285. · Zbl 0579.60023
[19] Thomas M. Liggett, Interacting particle systems, Classics in Mathematics, Springer-Verlag, Berlin, 2005. Reprint of the 1985 original. · Zbl 0559.60078
[20] Daniel Richardson, Random growth in a tessellation, Proc. Cambridge Philos. Soc. 74 (1973), 515 – 528. · Zbl 0295.62094
[21] Lucio Russo, On the critical percolation probabilities, Z. Wahrsch. Verw. Gebiete 56 (1981), no. 2, 229 – 237. · Zbl 0457.60084
[22] R. T. Smythe and John C. Wierman, First-passage percolation on the square lattice, Lecture Notes in Mathematics, vol. 671, Springer, Berlin, 1978. · Zbl 0379.60001
[23] John C. Wierman, Bond percolation on honeycomb and triangular lattices, Adv. in Appl. Probab. 13 (1981), no. 2, 298 – 313. · Zbl 0457.60085
[24] John C. Wierman, Percolation theory, Ann. Probab. 10 (1982), no. 3, 509 – 524. · Zbl 0485.60100
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.