×

zbMATH — the first resource for mathematics

The geometry of Teichmüller space via geodesic currents. (English) Zbl 0653.32022
Let S be a compact orientable surface of genus \(g\geq 2\). Denote by \({\mathcal T}(S)\) its Teichmüller space, i.e., the space of isotopy classes of hyperbolic metrics on S. The author provides a very natural compactification of the Teichmüller space \({\mathcal T}(S)\), which concludingly turns out to coincide with W. Thurston’s compactification via projective measured laminations [cf. papers of A. Fathi, F. Laudenbach and V. Poenaru in the book “Travaux de Thurston sur les surfaces” (1979; Zbl 0406.00016); e.g. F. Laudenbach, ibid., 209- 224 (1979; Zbl 0446.57018), A. Fathi and F. Laudenbach, ibid., 139-150 (1979; Zbl 0446.57015), and V. Poenaru, ibid., 5-20 (1979; Zbl 0446.57005)]. The authors construction is based upon the notion of geodesic currents, which has been introduced by himself in an earlier work [cf. the author, Ann. Math. 124, 71-158 (1986)]. The geodesic currents, i.e., the \(\pi_ 1(S)\)-invariant positive measures on the space \(G(\tilde S)\) of (unoriented) geodesics on the universal covering \(\tilde S\) of S, are shown to form a complete uniform space \({\mathcal C}(S)\), whose projectivization \({\mathcal P}{\mathcal C}(S):=({\mathcal C}(S)- 0)/{\mathbb{R}}^+\) is compact. It is then proved that \({\mathcal T}(S)\) admits a proper topological embedding into \({\mathcal C}(S)\), whose image is asymptotic to Thurston’s space \({\mathcal M}{\mathcal L}(S)\) of measured laminations. This provides a compactification of \({\mathcal T}(S)\) (within \({\mathcal P}{\mathcal C}(S))\) by \({\mathcal P}{\mathcal M}{\mathcal L}(S)\), so to speak a “unified” version of Thurston’s approach. Another advantage of the author’s construction is that it gives a representation of Teichmüller space \({\mathcal T}(S)\) as a submanifold of an infinite-dimensional analog of the hyperbolic n-space \({\mathbb{H}}^ n\). Then the metric on \({\mathcal T}(S)\) induced by the hyperbolic metric on \({\mathbb{H}}^ n\) is equal (up to a constant factor) to the celebrated Petersson-Weil metric.
Reviewer: W.Kleinert

MSC:
32G15 Moduli of Riemann surfaces, Teichmüller theory (complex-analytic aspects in several variables)
32Q45 Hyperbolic and Kobayashi hyperbolic manifolds
32J05 Compactification of analytic spaces
58A25 Currents in global analysis
57R30 Foliations in differential topology; geometric theory
PDF BibTeX XML Cite
Full Text: DOI EuDML
References:
[1] [A-A] Arnol’d, V.I., Avez, A.: Problèmes ergodiques de la mécanique classique. Gauthier-Villars, 1967 (English translation published by Benjamin, 1968) · Zbl 0149.21704
[2] [B-C] Bleiler, S., Casson, A.: Automorphisms of surfaces after Nielsen and Thurston. To appear in Cambridge University Press · Zbl 0649.57008
[3] [B1] Bonahon, F.: Bouts des variétés hyperboliques de dimension 3. Ann. Math.124, 71-158 (1986) · Zbl 0671.57008 · doi:10.2307/1971388
[4] [B2] Bonahon, F.: Structures géométriques sur les variétés de dimension 3 et applications. Thèse d’Etat, Université d’Orsay, 1985
[5] [Bk] Bourbaki, N.: Eléments de Mathématiques, livre VII (Intégration). Paris: Hermann 1965
[6] [C] Chu, T.: The Weil-Petersson metric in the moduli space. Chin. J. Math.4, 29-51 (1976) · Zbl 0344.32006
[7] [E-O] Eberlein, P., O’Neill, B.: Visibility manifolds. Pac. J. Math.46, 45-109 (1973) · Zbl 0264.53026
[8] [F-L-P] Fathi, A., Laudenbach, F., Poenaru, V.: Travaux de Thurston sur les surfaces. Astérisque no 66-67, Société Mathématique de France, 1979
[9] [F] Floyd, W.: Group completions and limit sets of Kleinian groups. Invent. Math.57, 205-218 (1980) · Zbl 0428.20022 · doi:10.1007/BF01418926
[10] [G1] Gromov, M.: Structures métriques pour les variétés riemanniennes. (Notes by Lafontaine, J. and Pansu, P.). Cedic-Fernand-Nathan, 1981
[11] [G2] Gromov, M.: Hyperbolic manifolds, groups and actions. In: Kra, I., Maskit, B. (eds.), Riemann surfaces and related topics. Proceedings of the 1978 Stony Brook conference, (Ann. Math. Studies, vol. 97, pp. 183-215), Princeton University Press, 1981
[12] [G3] Gromov, M.: Hyperbolic spaces. In: Gersten, S.M. (ed.) Essays in combinatorial group theory. Berlin Heidelberg New York: Springer, 1987
[13] [H-P] Harer, J., Penner, R.C.: Combinatorics of train tracks, Preprint, University of Maryland and University of Southern California, 1984 · Zbl 0765.57001
[14] [H] Horowitz, R.: Characters of free groups represented in the two-dimensional linear group. Commun. Pure Appl. Math.25, 635-649 (1972) · Zbl 1184.20009 · doi:10.1002/cpa.3160250602
[15] [J] Jørgensen, T.: Traces in 2-generator subgroups of ?. Proc. Am. Math. Soc.84, 339-343 (1982) · Zbl 0498.20035
[16] [K] Kerckhoff, S.P.: The Nielsen realization theorem. Ann. Math.117, 235-265 (1983) · Zbl 0528.57008 · doi:10.2307/2007076
[17] [N] Nielsen, J.: Untersuchung zur Topologie der geschlossenen zweiseitigen Flächen, I, II and III. Acta Math.50, 189-358 (1927);53, 1-76 (1929);58, 87-167 (1931) · JFM 53.0545.12 · doi:10.1007/BF02421324
[18] [S] Sigmund, K.: On dynamical systems with the specification property. Trans. Am. Math. Soc.190, 285-299 (1974) · Zbl 0286.28010 · doi:10.1090/S0002-9947-1974-0352411-X
[19] [T1] Thurston, W.P.: On the geometry and dynamics of diffeomorphisms of surfaces I. Unpublished article, Princeton University, 1975
[20] [T2] Thurston, W.P.: The topology and geometry of 3-manifolds, lecture notes. Princeton University, 1976-79
[21] [Tr] Tromba, A.J.: On a natural affine connection on the space of almost complex structures and the curvature of Teichmüller space with respect to its Weil-Petersson metric. Manuscr. Math.56, 456-497 (1986) · Zbl 0606.32014 · doi:10.1007/BF01168506
[22] [Wa] Walter, P.: An introduction to ergodic theory. Graduate texts in Mathematics, vol. 79. Berlin-Heidelberg-New York: Springer 1982
[23] [W1] Wolpert, S.: Non completeness of the Weil-Petersson metric for Teichmüller space. Pac. J. Math.61, 573-577 (1975) · Zbl 0327.32009
[24] [W2] Wolpert, S.: Thurston’s Riemannian metric for Teichmüller space. J. Differ. Geom.23, 143-174 (1986) · Zbl 0592.53037
[25] [W3] Wolpert, S.: Chern forms and the Riemann tensor for the moduli space of curves. Invent. Math.85, 119-145 (1986) · Zbl 0595.32031 · doi:10.1007/BF01388794
[26] [W4] Wolpert, S.: Geodesic length functions and the Nielsen problem. J. Differ. Geom.25, 275-296 (1987) · Zbl 0616.53039
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.