Borodin, O. V. On the total coloring of planar graphs. (English) Zbl 0653.05029 J. Reine Angew. Math. 394, 180-185 (1989). By Behzad and Vizing’s conjecture (1968), \(\kappa_ t(G)\leq \Delta (G)+2\), where \(\kappa_ t(G)\) is the total chromatic number and \(\Delta\) (G) - the maximal degree of a graph G. For planar graphs G it is proved here that \(\kappa_ t(G)\leq \Delta (G)+2\) if \(\Delta\) (G)\(\not\in \{6,7,8\}\), \(\kappa_ t(G)\leq \Delta (G)+3\) always, and \(\kappa_ t(G)=\Delta (G)+1\) if \(\Delta\) (G)\(\geq 14\). Reviewer: O.V.Borodin Cited in 5 ReviewsCited in 113 Documents MSC: 05C15 Coloring of graphs and hypergraphs 05C10 Planar graphs; geometric and topological aspects of graph theory Keywords:total chromatic number; maximal degree; planar graphs PDF BibTeX XML Cite \textit{O. V. Borodin}, J. Reine Angew. Math. 394, 180--185 (1989; Zbl 0653.05029) Full Text: DOI Crelle EuDML