×

zbMATH — the first resource for mathematics

Escape from the unstable equilibrium in a random process with infinitely many interacting particles. (English) Zbl 0652.60110
Summary: We consider a one-dimensional version of the model introduced by the first author, P. A. Ferrari and J. L. Lebowitz, ibid. 44, 589-644 (1986; Zbl 0629.60107). At each site of Z there is a particle with spin \(\pm 1\). Particles move according to the stirring process and spins change according to the Glauber dynamics. In the hydrodynamical limit, with the stirring process suitably speeded up, the local magnetic density \(m_ l(r)\) is proven in the paper cited above to satisfy the reaction-diffusion equation \[ (*)\quad \partial_ tm_ t(r)=2^{- 1}\partial^ 2_ rm_ t(r)-V'(m_ t) \] \(V(m)=-2^{-1}\alpha m^ 2+4^{-1}\beta m^ 4\), \(\alpha\) and \(\beta >0\), \(\alpha\) and \(\beta\) being determined by the parameters of the Glauber dynamics.
In the present paper we consider an initial state with zero magnetization, \(m_ 0(r)=0\). We then prove that at long times, before taking the hydrodynamical limit, the evolution departs from that predicted by (*) and that the microscopic state becomes a nontrivial mixture of states with different magnetizations.

MSC:
60K35 Interacting random processes; statistical mechanics type models; percolation theory
60J70 Applications of Brownian motions and diffusion theory (population genetics, absorption problems, etc.)
PDF BibTeX Cite
Full Text: DOI
References:
[1] A. De Masi, P. Ferrari, and J. L. Lebowitz, Rigorous derivation of reaction-diffusion equations with fluctuations,Phys. Rev. Lett. 55:1947 (1985)
[2] A. De Masi, P. Ferrari, and J. L. Lebowitz, Reaction-diffusion equations for interacting particle systems,J. Stat. Phys. 44:589 (1986). · Zbl 0629.60107
[3] H. Spohn, Kinetic equations for Hamiltonian systems: Markovian limits,Rev. Mod. Phys. 53:569 (1980). · Zbl 0465.76069
[4] A. De Masi, N. Ianiro, A. Pellegrinotti, and E. Presutti, A survey of the hydrodynamical behavior of many particle systems, inStudies in Statistical Mechanics, Vol. XI,Nonequilibrium Phenomena, II: From Stochastics To Hydrodynamics, J. L. Lebowitz and E. W. Montroll, eds. (North-Holland, Amsterdam, 1984), pp. 127-293. · Zbl 0567.76006
[5] E. Presutti, Collective phenomena in stochastic particle systems, BIBOS Conference, Bielefeld, Spring 1985. · Zbl 0637.76058
[6] H. Spohn, Hydrodynamic limit for systems with many particles. Proceedings of the International Conference on Mathematical Problems from the Physics of Fluids, Rome, June 1985.
[7] L. Arnold, On the consistency of the mathematical models of chemical reactions, inDynamics of Synergetic Systems, Proc. Int. Symp. Synergetics, Bielefeld, 1979, H. Haken, ed. (Springer-Verlag, Berlin, 1980).
[8] H. Haken,Synergetics, 2nd ed. (Springer-Verlag, Berlin, 1978). · Zbl 0396.93001
[9] L. Arnold and M. Theodosopulu, Deterministic limit of the stochastic model of chemical reactions with diffusion,Adv. Appl. Prob. 12:367-379 (1980). · Zbl 0429.60025
[10] P. Kotelenez, Law of large numbers and central limit theorem for chemical reactions with diffusion, Universität Bremen, Forschungsschwerpunkt Dyn. Systems Report No. 81 (1982). · Zbl 0523.60078
[11] M. Metivier, Convergence faible et principe d’invariance pour des martingales à valeurs dans des espaces de Sobolev,Ann. Inst. H. Poincaré 20:329 (1984). · Zbl 0549.60041
[12] P. Dittrich, A stochastic model of a chemical reaction with diffusion, Preprint, 1986. · Zbl 0631.60081
[13] P. Calderoni and M. Pulvirenti, Propagation of chaos for Burgers equation,Ann. Inst. H. Poincaré, Sec. A, Phys. Theor. 29:85-97 (1983). · Zbl 0526.60057
[14] D. Dawson, Critical dynamics and fluctuations for a meanfield model of cooperative behavior,J. Stat. Phys. 31:1 (1983).
[15] E. Gutkin and M. Kac, Propagation of chaos and the Burgers equation,SIAM J. Appl. Math. 43:971-980 (1983). · Zbl 0554.35104
[16] K. Ito, Motions of infinite particles,Kyoto Univ. 367:1-33 (1979).
[17] A. Joffe and M. Metivier, Weak convergence of sequences of semimartingales with applications to multiple branching processes, Rapport Interne, Univ. de Montreal, 1982.
[18] M. Kac,Foundations of Kinetic Theory, Proceedings of the 3rd Berkeley Symposium on Math. Stat. and Prob., Vol. 3 (1956), pp. 171-197. · Zbl 0072.42802
[19] M. Metivier, Quelques problèmes liés aux systèmes infinis de particules et leurs limites, École Polytechnique, Palaiseau (Conférence donnée à Pisa, September, 1984).
[20] C. Marchioro and M. Pulvirenti,Vortex Methods in Two-Dimensional Fluid Dynamics, Lecture Notes in Physics, Vol. 203 (Springer-Verlag, Berlin, 1984). · Zbl 0545.76027
[21] A. Martin Lof, Limit theorems for the motion of a Poisson system of independent Markovian particles with high density,Z. Wahr. Geb. 34:205-223 (1976). · Zbl 0332.60038
[22] H. P. McKean, Propagation of chaos for a class of nonlinear parabolic equations, Lecture Series in Differential Equations, Vol. 7 (Catholic University, 1967), pp. 41-57.
[23] H. P. McKean, A class of Markov processes associated with nonlinear parabolic equations,Proc. Natl. Acad. Sci. USA 56:1907-1911 (1966). · Zbl 0149.13501
[24] H. P. McKean, Fluctuations in the kinetic theory of gases,Comm. Pure Appl. Math. 28:435-455 (1975).
[25] K. Oelschlager, A law of large numbers for moderately interacting diffusion processes,Z. Wahr. Geb. 69:279-322 (1985). · Zbl 0549.60071
[26] H. Osada and S. Kotani, Propagation of chaos for Burgers equation, Preprint, 1983. · Zbl 0603.60072
[27] A. S. Sznitman, Propagation of chaos for Burgers equation, Preprint, 1984. · Zbl 0547.60080
[28] H. Tanaka,Limit Theorems for Certain Diffusion Processes with Interaction, Proceedings of the Taniguchi International Symposium on Stochastic Analysis (Kinokuniya, Tokyo, 1984), pp. 469-488. · Zbl 0552.60051
[29] H. Tanaka and M. Hitsuda, Central limit theorem for a simple diffusion model of interacting particles,Hiroshima Math. J. 11:415-423 (1981). · Zbl 0469.60097
[30] F. Baras, G. Nicolis, M. Malek Mansour, and J. W. Turner, Stochastic theory of adiabatic explosion,J. Stat. Phys. 32:1-24 (1983).
[31] F. de Pasquale and P. Tombesi, The decay of an unstable equilibrium near a ?critical point,?Phys. Lett. 72A:7-9 (1979).
[32] F. de Pasquale, P. Tartaglia, and P. Tombesi, Early stage domain formation and growth in one-dimensional systems,Phys. Rev. A 31:2447-2453 (1985).
[33] M. Suzuki, inProc. XVIIth Solvay Conf. Phys. (Wiley, New York, 1981).
[34] R. Di Perna, Oscillations in solutions to nonlinear PDE, Proceedings of the International Conference on Mathematical Problems from the Physics of Fluids, Rome, June 1985, and references quoted therein.
[35] M. Cassandro, A. Galves, E. Olivieri, and M. E. Vares, Metastability behavior of stochastic dynamics,J. Stat. Phys. 35:603-634 (1984). · Zbl 0591.60080
[36] M. Cassandro, E. Olivieri, and P. Picco, Small random perturbations of infinite dynamical systems and nucleation theory,Ann. Inst. H. Poincaré, to appear. · Zbl 0598.35133
[37] W. G. Fans and G. Jona-Lasinio, Large fluctuations for a nonlinear heat equation with noise,J. Phys. A: Math. Gen. 15:3025-3055 (1982). · Zbl 0496.60060
[38] A. Galves, E. Olivieri, and M. E. Vares, Metastability for a class of dynamical systems to small random perturbations, submitted toAnn. Prob. (1984).
[39] C. Kipnis and C. Newman, Metastable behavior of infrequently observed, weakly random, one-dimensional diffusion processes, Preprint, 1984. · Zbl 0592.60063
[40] G. Jona-Lasinio and Mitter, On the stochastic quantization of field theory, Preprint, 1985. · Zbl 0588.60054
[41] A. De Masi, N. Ianiro, and E. Presutti, Small deviations from local equilibrium for a process which exhibits hydrodynamical behavior. I,J. Stat. Phys. 29:57 (1982).
[42] P. Ferrari, E. Presutti, E. Scacciatelli, and M. E. Vares, The symmetric simple exclusion process. I: Probability estimates, Preprint, 1986. · Zbl 0749.60094
[43] T. M. Liggett,Interacting Particle Systems (Springer-Verlag, New York, 1985). · Zbl 0559.60078
[44] U. Petrov, Sum of independent random variables (Springer-Verlag, New York, 1975). · Zbl 0322.60043
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.