×

zbMATH — the first resource for mathematics

On extremal rational elliptic surfaces. (English) Zbl 0652.14003
We classify all elliptic fibrations on rational elliptic surfaces with only a finite group of sections. In view of the Shioda-Tate formula and the automatic Picard number 10 of rational surfaces, this is equivalent to fibrations which are maximally reducible. (The sum of the ranks of all reducible fibers equals \(8;rank=(\#components-1))\). We call such fibrations extremal. It turns out to be 16 different cases (one of which depending on moduli) and the semistable ones (only multiplicative fibers) are classified by fourtuples of integers summing up to 12 (the Euler characteristic) and whose products are squares.
The techniques used are both combinatorial (the combinatorial data of the J-map) and geometrical exhibiting actual constructions. In subsequent papers we have classified all possible configurations of singular fibers on rational surfaces (around 300 cases) and all possible semistable configurations on K3 surfaces (around 1200). The classification of all extremal fibrations on a K3 surface (the next case) might turn out to be a severe test of human endurance.
Reviewer: U.Persson

MSC:
14D99 Families, fibrations in algebraic geometry
14F45 Topological properties in algebraic geometry
14J25 Special surfaces
14J27 Elliptic surfaces, elliptic or Calabi-Yau fibrations
PDF BibTeX XML Cite
Full Text: DOI EuDML
References:
[1] Beauville, A.: Les familles stables de courbes elliptiques sur ?1 admettant quatre fibres singulieres. C.R. Acad. Sc. Paris, t.294, 657-660 (1982) · Zbl 0504.14016
[2] Barth, W., Peters, C., Van de Ven, A.: Compact complex surfaces. Ergebnisse der Mathematik und ihrer Grenzgebiete, 3. Folge, Bd. 4. Berlin Heidelberg New York: Springer 1984 · Zbl 0718.14023
[3] Schmickler-Hirzebruch, U.: Elliptische Fl?chen ?ber ?1? mit drei Ausnahmefasern und die hypergeometrische Differentialgleichung. Schriftreihe des Mathematischen Instituts der Universit?t M?nster, Februar 1985 · Zbl 0589.14011
[4] Kodaira, K.: On compact complex analytic surfaces II. Ann. Math.77, 563-626 (1963) · Zbl 0118.15802 · doi:10.2307/1970131
[5] Kodaira, K.: On the structure of compact complex analytic surfaces II. Am. J. Math.88, 682-721 (1966) · Zbl 0193.37701 · doi:10.2307/2373150
[6] Miranda, R.: The moduli of Weierstrass fibrations over 557-3. Math. Ann.255, 379-394 (1981) · Zbl 0454.14004 · doi:10.1007/BF01450711
[7] Morrison, I., Perrson, U.: Numerical sections on elliptic surfaces. Compos. Math. (To appear)
[8] Persson, U.: Horikawa surfaces with maximal Picard numbers. Math. Ann.259, 287-312 (1982) · Zbl 0478.14031 · doi:10.1007/BF01456942
[9] Persson, U.: Double sextics and singular K-3 surfaces. Algebraic Geometry, Proceedings SLN (1985) · Zbl 0603.14023
[10] Shioda, T.: On elliptic modular surfaces. J. Math. Soc. Japan24, 20-59 (1972) · Zbl 0226.14013 · doi:10.2969/jmsj/02410020
[11] Tate, J.: On the conjecture of Birch and Swinnerton-Dyer. Sem. Bourbaki Exp.306, 1-26 (1966)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.