×

zbMATH — the first resource for mathematics

Rigorous estimates for a computer-assisted KAM theory. (English) Zbl 0651.58011
The authors try to get a numerically senseful estimate for the admitted perturbation in time dependent nearly integrable Hamiltonian systems of one degree of freedom such that invariant KAM-tori do exist. They prepare more ore less Arnold’s existence proof for getting computer-assisted results.
Reviewer: H.Rüßmann

MSC:
37J99 Dynamical aspects of finite-dimensional Hamiltonian and Lagrangian systems
37C55 Periodic and quasi-periodic flows and diffeomorphisms
70H05 Hamilton’s equations
37J40 Perturbations of finite-dimensional Hamiltonian systems, normal forms, small divisors, KAM theory, Arnol’d diffusion
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] DOI: 10.1007/BFb0107359 · doi:10.1007/BFb0107359
[2] DOI: 10.1007/BFb0107359 · doi:10.1007/BFb0107359
[3] DOI: 10.1007/BFb0107359 · doi:10.1007/BFb0107359
[4] Herman M. R., Asterisque 1 pp 103– (1985)
[5] DOI: 10.1063/1.525964 · doi:10.1063/1.525964
[6] DOI: 10.1007/BF02790574 · doi:10.1007/BF02790574
[7] DOI: 10.1017/S0143385700001681 · Zbl 0525.58021 · doi:10.1017/S0143385700001681
[8] DOI: 10.1007/BF01209326 · Zbl 0585.58032 · doi:10.1007/BF01209326
[9] Kolmogorov A. N., Dokl. Akad. Nauk. SSR 98 pp 527– (1954)
[10] DOI: 10.1070/RM1963v018n05ABEH004130 · Zbl 0129.16606 · doi:10.1070/RM1963v018n05ABEH004130
[11] Moser J., Nach. Akad. Wiss. Göttingen, Math. Phys. Kl. II 1 pp 1– (1962)
[12] DOI: 10.1007/3-540-07171-7_19 · doi:10.1007/3-540-07171-7_19
[13] DOI: 10.1016/0370-1573(79)90023-1 · doi:10.1016/0370-1573(79)90023-1
[14] DOI: 10.1063/1.524170 · doi:10.1063/1.524170
[15] DOI: 10.1007/BF02748874 · doi:10.1007/BF02748874
[16] DOI: 10.1007/BF01013171 · doi:10.1007/BF01013171
[17] DOI: 10.1016/0378-4371(84)90262-0 · Zbl 0599.58036 · doi:10.1016/0378-4371(84)90262-0
[18] DOI: 10.1090/S0273-0979-1982-15008-X · Zbl 0487.58017 · doi:10.1090/S0273-0979-1982-15008-X
[19] Eckmann J.-P., Mem. Am. Math. Soc. 47 pp 289– (1984)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.