zbMATH — the first resource for mathematics

On additional motion invariants of classical Hamiltonian wave systems. (English) Zbl 0651.35080
It is shown that the existence of an analytic invariant in addition to the natural ones (moment, energy and others) for a classical Hamiltonian wave system leads to the existence of infinitely many such invariants. However this phenomenon reduces a Hamiltonian system to a complete integrable system only if the dispersion law is non-degenerative. Results on degenerative dispersion laws and a factorizing of the S-matrix are presented. Concrete examples of Hamiltonian systems are adduced, for instance \(i\psi_ t-\psi_{xx}+\psi_{yy}=| \psi |^ 2\psi.\) Also the singular elements of the scattering matrix are considered.
Reviewer: V.A.Yumaguzhin

35Q99 Partial differential equations of mathematical physics and other areas of application
35P25 Scattering theory for PDEs
Full Text: DOI
[1] Gardner, C.S.; Green, J.M.; Kruskal, M.D.; Miura, R.M., Method for solving the Korteweg-de Vries equation, Phys. rev. lett., 19, 1095-1097, (1967) · Zbl 1061.35520
[2] Flashka, H.; McLaughlin, Canonically conjugate variables for KdV and Toda lattice with periodic boundary conditions, Progr. theor. phys., 55, 438-456, (1976) · Zbl 1109.35374
[3] Sokolov, V.V.; Shabat, A.B., Classification of integrable evolution equations, Sov. sci. rev. C, 4, 221-280, (1984) · Zbl 0554.35107
[4] Walquist, H.D.; Estabrook, F.B., Prolongation structures of nonlinear evolution equations, J. math. phys., 16, 1-7, (1976) · Zbl 0298.35012
[5] Walquist, H.D.; Estabrook, F.B., Prolongation structures of nonlinear evolution equations, J. math. phys., 16, 1293-1297, (1976) · Zbl 0333.35064
[6] Lax, P.D., Integrals of nonlinear equations and solitary waves, Mathematica, 13, 128-150, (1969)
[7] Zakharov, V.E.; Shabat, A.B., The exact theory of the two-dimensional self-focusing and one-dimensional self-trapping of waves in non-linear media, Zhetf, 61, 118-134, (1971)
[8] Zakharov, V.E.; Shabat, A.B., On the self-interaction of solitons in stable media, Zhetf, 64, 1627-1639, (1973)
[9] Zakharov, V.E.; Shabat, A.B., Integration of nonlinear evolution equations of mathematical physics by the inverse scattering transform, Funct. anal. appl., 8, No. 3, 43-53, (1974), 1 · Zbl 0303.35024
[10] Zakharov, V.E.; Shabat, A.B., Integration of nonlinear equations of mathematical physics by the inverse scattering transform, Funct. anal. appl., 13, No. 3, 13-22, (1979)
[11] Zakharov, V.E.; Faddeev, L.D., KdV equation is completely integrable Hamiltonian system, Funct. anal. appl., 5, No. 4, 18-27, (1971)
[12] Ablovitz, M.J.; Kaup, D.J.; Newell, A.C.; Segur, H., The inverse scattering transform-the Fourier analysis for nonlinear problem, Stud. appl. math., LIII, 249-315, (1974) · Zbl 0408.35068
[13] Gardner, C.S.; Green, J.M.; Kruskal, M.D.; Miura, R.M., Korteweg-de Vries equation. IV, Comm. pure appl. math., 27, 97-133, (1974) · Zbl 0291.35012
[14] Zakharov, V.E.; Manakov, S.V., About the complete integrability of the nonlinear Schrödinger equation, Theor. mat. phys., 19, 332-343, (1974), (in Russian)
[15] Zakharov, V.E.; Faddeev, L.D.; Takhtadjan, L.A., A complete description of the sine-Gordon equation solutions, Dokl. acad. nauk USSR, 219, 1334-1337, (1974)
[16] Zakharov, V.E.; Mikhailov, A.V., Relativistic-invariant two-dimensional field theory models, integrable via inverse scattering, Zhetf, 74, 1953-1973, (1978)
[17] Zakharov, V.E.; Manakov, S.V., On the three wave packets resonant interaction theory, in the nonlinear media, Zhetf, 69, 1654-1673, (1975)
[18] Kaup, D.J., Three wave resonant interaction, Stud. appl. math., 55, No. 5, 9, (1976)
[19] Zakharov, V.E.; Manakov, S.P.; Novikov, S.P.; Pitaevskii, L.P., Soliton theory, (1980), Nauka Moscow · Zbl 0598.35003
[20] Kadomtsev, B.B.; Petviashvili, V.I., On soliton stability in weakly dispersive media, Dokl. acad. nauk USSR, 192, 753-756, (1970) · Zbl 0217.25004
[21] Zakharov, V.E., The exact solution of the three wave packets three-dimensional parametric interaction problem, Dokl. acad. nauk USSR, 229, 1314-1317, (1976) · Zbl 0363.35024
[22] Kaup, D.J., The solution of general initial value problem for the full three-dimensional three wave resonant interaction, Physica, 3D, 374-395, (1981) · Zbl 1194.35449
[23] Davey, A.; Stewartson, K., On three-dimensional packets of surface waves, (), 101-110 · Zbl 0282.76008
[24] Anker, D.; Freeman, N.S., On the solution of Davey-Stewartson equations for long waves, (), 529-540 · Zbl 0384.76016
[25] Schulman, E.I., On the existence of infinite set of motion invariants for the system of three-dimensional resonantly interacting wave packets, Teor. mat. physica, 44, 224-228, (1980)
[26] Zakharov, V.E.; Schulman, E.I., Degenerative dispersion laws, motion invariants and kinetic equations, Physica, 1D, 192-202, (1980) · Zbl 1194.37162
[27] Poincaré, A., (), Selected
[28] Poincaré, A., (), selected
[29] Zakharov, V.E.; Schulman, E.I., On the integrability of the system of two coupled nonlinear Schrödinger equations, Physica, 4D, 270-274, (1982) · Zbl 1194.35435
[30] Zakharov, V.E., Integrable systems in multidimensional spaces, Lecture notes in phys., 153, 190-216, (1983)
[31] Schulman, E.I., On the integrability of Davey-Stewartson type of equations, Teor. mat. phys., 56, 131-136, (1983)
[32] Schulman, E.I., On the integrability of long and short waves resonant interaction equations, Dokl. akad. nauk USSR, 259, 579-581, (1981)
[33] Zakharov, V.E.; Schulman, E.I., On the scattering matrix and integrability of classical Hamiltonian wave systems possessing an additional motion invariant, Dokl. acad. nauk USSR, 283, 1325-1328, (1985)
[34] Benilov, E.S.; Burtsev, S.P., On the integrability of langmuire-acoustic waves interactions equations, Phys. lett. A, 98, 256-258, (1983)
[35] Umezava, H., The quantum field theory, (1958), Inostr. Lit Moscow
[36] Zakharov, V.E., Hamiltonian formalism for waves in nonlinear media with dispersion, Izv. VUZOV, ser. radiofizika, 17, 431-453, (1974)
[37] Zakharov, V.E., The stability of periodic wave with finite amplitude on a surface of deep fluid, Pricl. mat. techn. phys., 2, 86-94, (1968)
[38] Yuen, H.D.; Ferguson, W.E., Fermi-pasta-Ulam recurrence in the two-dimensional nonlinear Schrödinger equation, Phys. fluids, 21, 2116-2118, (1978)
[39] Zakharov, V.E.; Ivanov, M.F.; Stchur, L.N., On the anomalous slow stochastization in some two-dimensional field theory models, Pisma v zhetf, 30, 39-44, (1979)
[40] Shrira, V.I., On the propagation of a three-dimensional packet of weakly nonlinear internal gravity waves, J. nonlin. mech., 16, 129-138, (1982) · Zbl 0494.76027
[41] Zakharov, V.E.; Rubenchik, A.M., On the nonlinear interaction of high-frequent and low-frequent waves, Prikl. mat. techn. phys., 5, 84-98, (1972)
[42] Zakharov, V.E., The inverse scattering transform, (), 270-309
[43] Berkhoer, A.L.; Zakharov, V.E., Self-interaction of waves with different polarizations in nonlinear media, Zhetf, 58, 903-911, (1970)
[44] Manakov, S.V., On the two-dimensional self-focusing theory, Zhetf, 65, 505-516, (1973)
[45] Zakharov, V.E., Collapse of langmuire waves, Zhetf, 62, 1745-1759, (1972)
[46] Makhankov, V.G.; Pashaev, O.K., On properties of nonlinear Schrödinger equation with U(p,q) symmetry, JINR preprint E2-81-70, (1981), Dubna · Zbl 0767.35083
[47] Arnold, V.I., Mathematical methods of classical mechanics, (1974), Nauka Moscow
[48] Zakharov, V.E.; Lvov, V.S., On stochastic description of non-linear wave fields, Izv. VUZOV, ser. radiofizika, 18, 1470-1484, (1975)
[49] Zakharov, V.E.; Konopolchenko, B.G., On the theory of the recursive operator, Comm. math. phys., 93, 483-509, (1984) · Zbl 0594.35080
[50] V.E. Zakharov, Pisma v ZhETF.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.