zbMATH — the first resource for mathematics

On superrigidity and arithmeticity of lattices in semisimple groups over local fields of arbitrary characteristic. (English) Zbl 0649.22008
The author proves that if \(\Gamma\) is an irreducible lattice in a group G of the form \(\prod^{n}_{i-1}G_ i(k_ i)\), where \(G_ i\) is an absolutely simple group of adjoint type defined and isotropic over a local field \(k_ i\), with \(char(k_ i)\) arbitrary, and if G’ is an absolutely simple group of adjoint type defined over a local field k, \(\rho: \Gamma\to G'(k)\) is a homomorphism with image Zariski dense on G’ and not relatively compact in \(G'(k)\), then \(\rho\) extends to a continuous homomorphism of G into \(G'(k)\) provided \(\sum^{n}_{i=1}k_ i\)-rank\((G_ i)\geq 2\). As a consequence it is proven that \(\Gamma\) is arithmetic when \(\Gamma\) is finitely generated. These theorems extend the results of G. A. Margulis [Invent. Math. 76, 93-120 (1984; Zbl 0551.20028)] to positive characteristics.
Reviewer: A.D.Mednych

22E40 Discrete subgroups of Lie groups
22E50 Representations of Lie and linear algebraic groups over local fields
Full Text: DOI EuDML
[1] Artin, E.: Algebraic number and algebraic functions. New York University, 1951 (Polygraphed Notes) · Zbl 0054.02101
[2] Berberian, S.: Measure and integration. New York: Macmillan 1963 · Zbl 0126.08001
[3] Borel, A.: Linear algebraic groups. New York: Benjamin 1969 · Zbl 0206.49801
[4] Borel, A., Harder, G.: Existence of discrete cocompact subgroups of reductive groups over local fields. J. Reine Angew. Math.298, 53-64 (1978) · Zbl 0385.14014
[5] Borel, A., Springer, T.A.: Rationality properties of linear algebraic groups, II. Tohoku J. Math.20, 443-497 (1968) · Zbl 0211.53302
[6] Borel, A., Tits, J.: Groupes réductifs. Publ. Math., Inst. Hautes Etud. Sci.27, 55-150 (1965) · Zbl 0145.17402
[7] Borel, A., Tits, J.: Homormorphismes ?abstraits? de groupes algébriques simples. Ann. Math.97, (2) 499-571 (1973) · Zbl 0272.14013
[8] Cassels, J.W.S.: Local fields. In: Algebraic number theory. New York: Academic Press 1967 · Zbl 0159.50703
[9] Delaroche, C., Kirillov, A.: Sur les relations entre l’espace dual d’un groupe et la structure de ses sousgroupes fermés. Seminaire Bourbaki, No. 343 (1967/68)
[10] Harder, G.: Über die Galoiskohomologie halbeinfacher algebraischer Gruppen III. J. Reine Angew. Math.274/275, 125-138 (1975) · Zbl 0317.14025
[11] Humphreys, J.: Linear algebraic groups. SLN v. 21, 1975
[12] Kazdan, D.A.: Connection of the dual space of a group with the structure of its closed subgroups. Funct. Anal. Appl.1, 63-65 (1967) · Zbl 0168.27602
[13] Margulis, G.A.: Cobounded subgroups of algebraic groups over local fields. Funct. Anal. Appl.11, 45-57 (1977) · Zbl 0412.22007
[14] Margulis, G.A.: Arithmeticity of the irreducible lattices in the semisimple groups of rank greater than 1. Invent. Math.76, 93-120 (1984) · Zbl 0551.20028
[15] Prasad, G.: Lattices in semisimple groups over local fields. Adv. Math. (supplementary studies)6, 1-86 (1978)
[16] Prasad, G.: Strong approximation for semisimple groups over function fields. Ann. Math.105, 553-572 (1977) · Zbl 0348.22006
[17] Prasad, G.: Elementary proof of a theorem of Tits. Bull. Soc. Math. France110, 197-202 (1982) · Zbl 0492.20029
[18] Raghunathan, M.S.: Discrete subgroups of Lie groups. New York: Springer 1972 · Zbl 0254.22005
[19] Serre, J.-P.: Lie algebras and Lie groups. New York: Benjamin 1965 · Zbl 0132.27803
[20] Tamagawa, T.: On discrete Subgroups ofp-adic algebraic groups. In: Arithmetical algebraic geometry, Schilling, U.F.G. (ed.). New York: Harper and Row 1965 · Zbl 0158.27801
[21] Tits, J.: Algebraic and abstract simple groups. Ann. Math.80, 313-329 (1968) · Zbl 0131.26501
[22] Vinberg, E.B.: Rings of definition of dense subgroups of semisimple linear groups. Groups Math. USSR Izvestija5, 45-55 (1977) · Zbl 0252.20043
[23] Wang, S.P.: On density properties ofS-groups of locally compact groups. Ann. Math.94, 325-329 (1971) · Zbl 0265.22010
[24] Weil, A.: Basic Number Theory. Vol. 144, Springer, Berlin, Heidelberg, New York Inc., 1967 · Zbl 0176.33601
[25] Zariski, O., Samuel, P.: Commutative algebra, vol. 1. D. Van Nostrand Company 1967 · Zbl 0121.27801
[26] Zimmer, R.: Ergodic theory and semisimple groups. Boston: Birkhauser 1984 · Zbl 0571.58015
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.