zbMATH — the first resource for mathematics

The moduli space of 3-folds with \(K=0\) may nevertheless be irreducible. (English) Zbl 0649.14021
Let X be a complex analytic 3-fold having the following properties: (i) X has at worst canonical singularities; (ii) \(K_ X=0;\) (iii) for any analytic set \(Y\subset X\) of codimension \(\geq 2\), \(\pi_ 1(X-Y)=0\); (iv) if X is non-singular, its Hodge numbers are \[ \begin{matrix} 1& 0& 0& 1 \\ 0& h^{1,2}& B_ 2& 0\\ 0& B_ 2& h^{1,2}& 0\\ 1& 0& 0& 1 \end{matrix}. \] As the author says, the main point of the paper is to suggest a speculative framework in which the birational classes of 3-folds X satisfying these conditions might all fit together into an irreducible moduli space (such 3-folds are “equivalent” to K3-surfaces).
Reviewer: M.Beltrametti

14J30 \(3\)-folds
14D20 Algebraic moduli problems, moduli of vector bundles
14C30 Transcendental methods, Hodge theory (algebro-geometric aspects)
Full Text: DOI EuDML
[1] Artin, M.: Algebraization of formal moduli. II. Existence of modifications. Ann. Math.91, 88-135 (1970) · Zbl 0185.24701 · doi:10.2307/1970602
[2] Atiyah, M.F.: On analytic surfaces with double points. Proc. Royal Soc. A247, 237-244 (1958) · Zbl 0135.21301 · doi:10.1098/rspa.1958.0181
[3] Brieskorn, E.: Über die Auflösungen gewisser Singularitäten von holomorphen Abbildungen. Math. Ann.166, 76-102 (1966) · Zbl 0145.09402 · doi:10.1007/BF01361440
[4] Brieskorn, E.: Die Auflösungen der rationalen Singularitäten von holomorphen Abbildungen. Math. Ann.178, 255-270 (1968) · Zbl 0159.37703 · doi:10.1007/BF01352140
[5] Burns, D., Rapoport, M.: The Torelli problem for Kählerian K3 surfaces. Ann. Sci. Ecole Norm. Super8, 235-273 (1975) · Zbl 0324.14008
[6] Clemens, H.: Double solids. Adv. Math.47, 107-230 (1983) · Zbl 0509.14045 · doi:10.1016/0001-8708(83)90025-7
[7] Clemens, H.: Homological equivalence modulo algebraic equivalence is not finitely generated. Publ. Math. IHES58, 19-38 (1983) · Zbl 0529.14002
[8] Enriques, F.: Le superficie algebriche. Bologna: Zanichelli, 1946 · Zbl 0063.01251
[9] Friedman, R.: Simultaneous resolution of threefold double points. Math. Ann.274, 671-689 (1986) · Zbl 0576.14013 · doi:10.1007/BF01458602
[10] Grauert, H.: Über Modifikationen und exzeptionelle analytische Mengen. Math. Ann.146, 331-368 (1962) · Zbl 0173.33004 · doi:10.1007/BF01441136
[11] Griffiths, P.A.: On the periods of certain rational integrals II. Ann. Math.90, 496-541 (1969) · Zbl 0215.08103 · doi:10.2307/1970747
[12] Griffiths, P.A., Harris, J.: On the Noether-Lefschetz theorem and some remarks on codimension 2 cycles. Math. Ann.271, 31-51 (1985) · Zbl 0552.14011 · doi:10.1007/BF01455794
[13] Hirzebruch, F.: Some examples of threefolds with trivial canonical bundle, notes by J. Werner. Max Planck Inst. preprint no. 85-58, Bonn 1985
[14] Kodaira, K.: On the structure of compact complex analytic surfaces I. Am. J. Math.86, 751-798 (1964), collected works p. 1389 · Zbl 0137.17501 · doi:10.2307/2373157
[15] Mayer, A.: Families of K 3 surfaces. Nagoya Math. J.48, 1-17 (1972) · Zbl 0244.14012
[16] Mori, S.: Flip conjecture and existence of minimal models for 3-folds (in preparation)
[17] Reid, M.: Minimal models of canonical 3-folds. In: Advanced studies in Pure Math.1. Algebraic varieties and analytic varieties, 131-180, S. Iitaka and H. Morikawa (eds.). Amsterdam, New York, Oxford: Kinokuniya and North-Holland, 1983
[18] Todorov, A.: Application of Calabi-Yau metric to the Weil-Petersson metric and to the Teichmüller space of complex manifold withK=0. Max Planck Inst. preprint no. 86-41, Bonn 1986
[19] Tyurina, G.N.: The moduli space of complex surfaces withq=0 andK=0. In: I.R. Shafarevich, Algebraic surfaces, Proc. Steklov Inst.75, Chap. IX (1965)
[20] Wall, C.T.C.: Classification problems in topology V: on certain 6-manifolds. Invent. Math.1, 355-374 (1966) · Zbl 0149.20601 · doi:10.1007/BF01389738
[21] Werner, J.: Kleine Auflösungen spezieller dreidimensionaler Varietäten. Thesis (in preparation) (Bonn)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.