×

Low-order spectral models of the atmospheric circulation: A survey. (English) Zbl 0648.76033

This paper spans the complete range from the atmospheric circulation to its description in terms of spectral models; their reduction into components of low order and their solution. This leads to a variety of interesting behaviour characterised by various structures, bifurcations and chaotic motions. The rich diversity of behaviour gives an insight into properties of the large-scale atmospheric circulation. In particular it shows the mid-latitude flow vacillating between a zonal regime with strong westerlies and a meridional flow regime associated with blocking situations. It clearly demonstrates the finite predictability of the atmospheric circulation. This review gives a very full account of one approach to the dynamics of the atmospheric circulation, which combines modern mathematical techniques with physical intuition.
Reviewer: B.Fisher

MSC:

76E20 Stability and instability of geophysical and astrophysical flows
86A10 Meteorology and atmospheric physics

Software:

AUTO; AUTO-86
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Baer, F.: Analytical solutions to low-order spectral systems, Arch. Meteor. Geoph. Biokl. A 19 (1970). 255-282.
[2] Baer, F.: Energetics of low-order spectral systems, Tellus 23 (1971), 218-231. · doi:10.1111/j.2153-3490.1971.tb00565.x
[3] Barnett, T. P. and Roads, J. O.: Stochastic forcing and prediction of low-frequency planetary scale flow, J. Atmos. Sci. 43 (1986), 940-947. · doi:10.1175/1520-0469(1986)043<0940:SFAPOL>2.0.CO;2
[4] Baur, F., Hess, P., and Nagel, H.: Kalender der Grosswetterlagen Europas 1881-1939, Bad Homburg v.d. H., 1944.
[5] Benzi, R., Malguzzi, P., Speranza, A., and Sutera, A.: The statistical properties of the general atmospheric circulation: observational evidence on a minimal theory of bimodality, Quart. J. R. Meterol. Soc. 112 (1986), 661-674. · doi:10.1002/qj.49711247306
[6] Blackman, M., Madden, R. A., Wallace, J. M., and Gutzler, D. S.: Geographical variations in the vertical structure of geopotential height fluctuations, J. Atmos. Sci. 36 (1979), 2450-2466. · doi:10.1175/1520-0469(1979)036<2450:GVITVS>2.0.CO;2
[7] Bruns, T.: Contribution of linear and nonlinear processes to the long term variability of large scale atmospheric flow, J. Atmos. Sci. 42 (1985), 2506-2522. · doi:10.1175/1520-0469(1985)042<2506:COLANP>2.0.CO;2
[8] Bryan, K.: A numerical investigation of certain features of the general circulation, Tellus 11 (1959), 163-174. · doi:10.1111/j.2153-3490.1959.tb00017.x
[9] Charney, J. G. and DeVore, J. G.: Multiple flow equilibria in the atmosphere and blocking, J. Atmos. Sci. 36 (1979), 1205-1216. · doi:10.1175/1520-0469(1979)036<1205:MFEITA>2.0.CO;2
[10] Charney, J. G. and Straus, D. M.: Form-drag instability, multiple equilibria and propagating planetary waves in baroclinic, orographically forced, planetary wave systems, J. Atmos. Sci. 37 (1980), 1157-1176. · doi:10.1175/1520-0469(1980)037<1157:FDIMEA>2.0.CO;2
[11] Charney, J. G., Shukla, J., and Mo, K. C.: Comparison of a barotropic blocking theory with observation, J. Atmos. Sci. 38 (1981), 762-779. · doi:10.1175/1520-0469(1981)038<0762:COABBT>2.0.CO;2
[12] Constantin, P., Foias, C., Manley, O. P., and Temam, R.: Determining modes and fractal dimensions of turbulent flows, J. Fluid Mech. 150 (1985), 427-440. · Zbl 0607.76054 · doi:10.1017/S0022112085000209
[13] Davey, M. K.: A quasi-linear theory for rotating flow over topography. Part I: steady ?-plane channel, J. Fluid Mech. 99 (1980), 267-292. · Zbl 0446.76032 · doi:10.1017/S0022112080000614
[14] De Swart, H. E.: Analysis of a six component barotropic spectral model: chaotic motion, predictability and vacillation, CWI report AM-R8710 (1987a).
[15] De Swart, H. E.: A study on the relation between predictability and interaction between different scales of motion with a ?minimum order? atmospheric spectral model, CWI report (1987b) to appear.
[16] De Swart, H. E. and Grasman, J.: Sources of stochastic behaviour of dynamical systems, in Proc. Workshop The Dynamics of Long Waves in the Atmosphere, Kristineberg, Sweden, 1984, pp. 147-152.
[17] De Swart, H. E. and Grasman, J.: Effect of stochastic perturbations on a low-order spectral model of the atmospheric circulation, Tellus 39A, (1987), 10-24.
[18] Doedel, E. J.: AUTO 86 User Manual, Software for Continuation and Bifurcation Problems in Ordinary Differential Equations, Concordia University, Montreal, 1986.
[19] Dole, R. M. and Gordon, N. D.: Persistent anomalies of the extratropical Northern Hemisphere wintertime circulation: geographical distribution and regional persistence characteristics, Mon. Wea. Rev. 11 (1983), 1567-1586. · doi:10.1175/1520-0493(1983)111<1567:PAOTEN>2.0.CO;2
[20] uutton, J.: The nonlinear quasi-geostrophic equation: existence and uniqueness of solutions on a bounded domain, J. Atmos. Sci. 31 (1974), 422-433. · doi:10.1175/1520-0469(1974)031<0422:TNQGEE>2.0.CO;2
[21] Dutton, J.: The noliinear quasi-geostrophic equation. Part II: predictability, recurrence and limit properties of thermally forced and unforced flows, J. Atmos. Sci. 33 (1976a), 1431-1453. · doi:10.1175/1520-0469(1976)033<1431:TNQGEP>2.0.CO;2
[22] Dutton, J.: Aperiodic trajectories and stationary points in a three-component spectral model of atmospheric flow, J. Atmos. Sci. 33 (1976b), 1499-1504. · doi:10.1175/1520-0469(1976)033<1499:ATASPI>2.0.CO;2
[23] Egger, J.: Stochastically driven large-scale circulations with multiple equilibria, J. Atmos. Sci. 38 (1981), 2608-2618. · doi:10.1175/1520-0469(1981)038<2606:SDLSCW>2.0.CO;2
[24] Egger, J. and Schilling, H. D.: On the theory of the long-term variability of the atmosphere, J. Atmos. Sci. 40 (1983), 1073-1085. · doi:10.1175/1520-0469(1983)040<1073:OTTOTL>2.0.CO;2
[25] Fjøttoft, R.: On the changes in the spectral distribution of kinetic energy for two-dimensional, nondivergent flow, Tellus 5 (1953), 225-230. · doi:10.1111/j.2153-3490.1953.tb01051.x
[26] Franceshini, V., Tebaldi, C., and Zironi, F.: Fixed point limit behaviour of N-mode truncated Navier-Stokes equations as N increases, J. Stat. Phys. 35 (1983), 387-397. · Zbl 0587.35077 · doi:10.1007/BF01014392
[27] Frederiksen, J. S.: A unified three-dimensional instability theory of the onset of blocking and cyclogenesis II: teleconnection patterns, J. Atmos. Sci. 40 (1983), 2593-2609. · doi:10.1175/1520-0469(1983)040<2593:AUTDIT>2.0.CO;2
[28] Galin, M. B.: Energetics of a twelve-component model of the general atmospheric circulation, Atmos. Ocean Phys. 15 (1979), 89-92.
[29] Galin, M. B. and Kirichkov, S. Ye.: Effect of orography on the nonzonal circulation of the atmosphere and blocking formations, Atmos. Ocean. Phys. 21, (1985), 533-538.
[30] Gill, A. E.: Atmosphere-Ocean Dynamics, Academic Press, New York, 1982.
[31] Glendinning D. and Sparrow C.: Local and global behaviour near homoclinic orbits, J. Stat. Phys. 35, 645-697. · Zbl 0588.58041
[32] Gottlieb, D. and Orszag, S. A. Numerical Analysis of Spectral Methods, Regional Conference Series in Applied Mathematics 26, SIAM, Philadelphia, 1977. · Zbl 0412.65058
[33] Grebogi, C., Ott, E., and Yorke, J. A.: Crises, sudden changes in chaotic attractors, and transient chaos, Physica 7D (1986), 181-200. · Zbl 0561.58029
[34] Guckenheimer, J. and Holmes, P.: Nonlinear Oscillations, Dynamical Systems and Bifurcation of Vectorfields, Springer-Verlag, Berlin, 1983. · Zbl 0515.34001
[35] Hess P. and Brezowsky H.: Katalog der Grosswetteranlagen Deutschlands, Ber. Dtsch. Wetterdienstes 113 (1969).
[36] Jarraud, M. and Baede, A. P. M.: The use of spectral techniques in numerical weather prediction, Lect. Appl. Math. 22 (1985), 1-41. · Zbl 0593.76109
[37] Källén, E.: The nonlinear effects of orographic and momentum forcing in a low-order, barotropic model, J. Atmos. Sci. 38 (1981), 2150-2163. · doi:10.1175/1520-0469(1981)038<2150:TNEOOA>2.0.CO;2
[38] Källén, E.: Bifurcation properties of quasi-geostrophic, barotropic models and their relation to atmospheric blocking, Tellus 34 (1982), 255-265. · doi:10.1111/j.2153-3490.1982.tb01814.x
[39] Källén, E.: A note on orographically induced instabilities in two-layer models, J. Atmos. Sci. 40 (1983), 500-505. · doi:10.1175/1520-0469(1983)040<0500:ANOOII>2.0.CO;2
[40] Källén, E.: On hysteresis-like effects in orographically forced models, Tellus 37A (1985), 249-257.
[41] Keller, H. B.: Numerical solution of bifurcation and nonlinear eigenvalue problems, in P. H. Rabinowitz (ed.), Applications of Bifurcation Theory, Academic Press, New York, 1977, pp. 359-384.
[42] Kottalam, J., West, B. J., and Lindenberg, K.: Fluctuations and dissipation in multiple flow equilibria, preprint, University of California at San Diego, 1987.
[43] Kruse, H. A. and Hasselman, K.: Investigation of processes governing the large-scale variability of the atmosphere using low-order barotropic spectral models as a statistical tool, Tellus 38A (1986), 12-24.
[44] Kubota, S.: Some characteristics of the barotropic atmosphere with respect to the scales of disturbance, Papers Meteorol. Geoph. (Tokyo) 12 (1961), 183-198.
[45] Kubota, S., Hirose, M., Kikuchi, Y., and Kurihara, Y.: Barotropic forecasting with the use of surface spherical harmonic representations, Papers Meteor Geoph. (Tokyo) 12 (1961), 199-215.
[46] Legras, B. and Ghil, M.: Persistent anomalies, blocking and variations in atmospheric predictability, J. Atmos. Sci. 42 (1985), 433-471. · doi:10.1175/1520-0469(1985)042<0433:PABAVI>2.0.CO;2
[47] Lilly, D. K.: On the computational stability of numerical solutions of time-dependent, non-linear geophysical fluid dynamics problems, Mon. Wea. Rev. 93, (1965), 11-26. · doi:10.1175/1520-0493(1965)093<0011:OTCSON>2.3.CO;2
[48] Lorenz, E. N.: Maximum simplification of the dynamic equations, Tellus 12 (1960), 243-254. · doi:10.1111/j.2153-3490.1960.tb01307.x
[49] Lorenz, E. N.: Deterministic nonperiodic flow, J. Atmos. Sci. 20 (1963a), 130-141. · Zbl 1417.37129 · doi:10.1175/1520-0469(1963)020<0130:DNF>2.0.CO;2
[50] Lorenz, E. N.: The mechanics of vacillation, J. Atmos. Sci. 20 (1963b), 448-464. · doi:10.1175/1520-0469(1963)020<0448:TMOV>2.0.CO;2
[51] Lorenz, E. N.: A study of the predictability of a 28-variable atmospheric model, Tellus 17 (1965), 321-333. · doi:10.1111/j.2153-3490.1965.tb01424.x
[52] Lorenz, E. N.: The predictability of a flow which possesses many scales of motion, Tellus 21 (1969), 289-307. · doi:10.1111/j.2153-3490.1969.tb00444.x
[53] Lorenz, E. N.: Attractor sets and quasi-geostrophic equilibrium, J. Atmos. Sci. 37 (1980), 1685-1699. · doi:10.1175/1520-0469(1980)037<1685:ASAQGE>2.0.CO;2
[54] Lorenz, E. N.: Low-order models of atmospheric circulations, J. Meteor. Soc. Japan 60 (1982), 255-267.
[55] Lorenz, E. N.: Irregularity: a fundamental property of the atmosphere, Tellus 36A (1984), 98-110.
[56] Mitchell, K. E. and Dutton, J. A.: Bifurcations from stationary to periodic solutions in a low-order model of forced, dissipative barotropic flow, J. Atmos. Sci. 38 (1981), 690-716. · doi:10.1175/1520-0469(1981)038<0690:BFSTPS>2.0.CO;2
[57] Namias, J.: The index cycle and its role in the general circulation, J. Meteorol. 7 (1950), 130-139. · doi:10.1175/1520-0469(1950)007<0130:TICAIR>2.0.CO;2
[58] Oerlemans, J.: An objective approach to breaks in the weather, Mon. Wea. Rev. 106 (1978), 1672-1679. · doi:10.1175/1520-0493(1978)106<1672:AOATBI>2.0.CO;2
[59] Opsteegh, J. D. and Vernekar, A. D. A simulation of the January standing wave pattern including the effect of transient eddies, J. Atmos. Sci. 39 (1982), 734-744. · doi:10.1175/1520-0469(1982)039<0734:ASOTJS>2.0.CO;2
[60] Orszag, S. A.: Transform method for calculation of vector coupled sums. Application to the spectral form of the vorticity equation, J. Atmos. Sci. 27 (1970), 890-895. · doi:10.1175/1520-0469(1970)027<0890:TMFTCO>2.0.CO;2
[61] Pedlosky, J.: Geophysical Fluid Dynamics, Springer-Verlag, New York, 1979. · Zbl 0429.76001
[62] Pedlosky, J.: Resonant topographic waves in barotropic and baroclinic flows, J. Atmos. Sci. 38 (1981), 2626-2641. · doi:10.1175/1520-0469(1981)038<2626:RTWIBA>2.0.CO;2
[63] Phillips, N. A.: Energy transformations and meridional circulations associated with simple baroclinic waves in a two-level, quasi-geostrophic model, Tellus 6 (1954), 273-286. · doi:10.1111/j.2153-3490.1954.tb01123.x
[64] Pierrehumbert, R. T. and Malguzzi, P.: Forced coherent structures and local multiple equilibria in a barotropic atmosphere, J. Atmos. Sci. 41 (1984), 246-257. · doi:10.1175/1520-0469(1984)041<0246:FCSALM>2.0.CO;2
[65] Platzman, G. W.: The analytical dynamics of the spectral vorticity equation, J. Atmos. Sci. 19 (1962), 313-328. · doi:10.1175/1520-0469(1962)019<0313:TADOTS>2.0.CO;2
[66] Reinhold, B. B. and Pierrehumbert, R. T.: Dynamics of weather regimes: quasi-stationary waves and blocking, Mon. Wea. Rev. 110 (1982), 1105-1145. · doi:10.1175/1520-0493(1982)110<1105:DOWRQS>2.0.CO;2
[67] Roads, J. O.: Stable near-resonant states forced by orography in a simple baroclinic model, J. Atmos. Sci. 37 (1980), 2381-2395. · doi:10.1175/1520-0469(1980)037<2381:SNRSFB>2.0.CO;2
[68] Roads, J. O.: Stable and unstable near-resonant states in multilevel, severely truncated, quasi-geostrophic models, J. Atmos. Sci. 39 (1982), 203-224. · doi:10.1175/1520-0469(1982)039<0203:SAUNRS>2.0.CO;2
[69] Saltzman, B.: On the maintenance of the large-scale quasi-permanent disturbances of the atmosphere, Tellus 11 (1959), 425-431. · doi:10.1111/j.2153-3490.1959.tb00052.x
[70] Shirer, H. N. and Wells, R.: Mathematical Structure of the Singularities at the Transitions between Steady States in Hydrodynamic Systems, Springer-Verlag, Berlin, 1983. · Zbl 0535.76001
[71] Silberman, I.: Planetary waves in the atmosphere, J. Meteor. 11 (1954), 27-34. · doi:10.1175/1520-0469(1954)011<0027:PWITA>2.0.CO;2
[72] Silnikov, L. P.: A case of the existence of a denumerable set of periodic motions, Sov. Math. Dokl. 36 (1965), 163-166.
[73] Thompson, J. M. T. and Stewart, H. B.: Nonlinear Dynamics and Chaos, Wiley, Chichester, 1986. · Zbl 0601.58001
[74] Tung, K. K. and Rosenthal, A. J.: Theories of multiple equilibria?a critical reexamination. Part I: barotropic models, J. Atmos. Sci. 42 (1985), 2804-2819. · doi:10.1175/1520-0469(1985)042<2804:TOMEAC>2.0.CO;2
[75] Voigt, R. G., Gottlieb, D., and Yousoff Husaini, M. (eds.): Spectral Methods for Partial Differential Equations, SIAM, Philadelphia, 1984.
[76] Vickroy, J. G. and Dutton, J. A.: Bifurcation and catastrophe in a simple, forced, dissipative quasi-geostrophic flow, J. Atmos. Sci. 36 (1979), 42-52. · doi:10.1175/1520-0469(1979)036<0042:BACIAS>2.0.CO;2
[77] Wiin-Nielsen, A.: Steady states and stability properties of a low-order barotropic system with forcing and dissipation, Tellus 31 (1979), 375-386. · doi:10.1111/j.2153-3490.1979.tb00916.x
[78] Wiin-Nielsen, A.: Low- and high-index steady states in a low-order model with vorticity forcing, Contr. Atmos. Phys. 57 (1984), 291-306.
[79] Wolf, A., Swift, J. B., Swinney, H. L., and Vastano, J. A.: Determining Lyapunov exponents from a time series, Physica 6D (1985), 285-317. · Zbl 0585.58037
[80] Yao, M. S.: Maintenance of quasi-stationary waves in a two-level quasi-geostrophic spectral model with topography, J. Atmos. Sci. 37 (1980), 29-43. · doi:10.1175/1520-0469(1980)037<0029:MOQSWI>2.0.CO;2
[81] Yoden, S.: Nonlinear interactions in a two-layer, quasi-geostrophic, low-order model with topography. Part I: zonal flow-forced wave interactions, J. Meteorol. Soc. Japan 61 (1983a), 1-18.
[82] Yoden, S.: Nonlinear interactions in a two-layer, quasi-geostrophic, low-order model with topography. Part II: interactions between zonal flow, forced waves and free waves, J. Meterol. Soc. Japan 61 (1983b), 19-35.
[83] Yoden, S.: Bifurcation properties of a quasi-geostrophic, barotropic, low-order model with topography, J. Metorol. Soc. Japan 63 (1985), 535-546.
[84] Yoden, S. and Mukougawa, H.: Instabilities of a baroclinic zonal flow in the presence of surface topography, J. Meteorol. Soc. Japan 61 (1983), 789-804.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.