zbMATH — the first resource for mathematics

Maximum likelihood analysis of spike trains of interacting nerve cells. (English) Zbl 0646.92007
Suppose that a neuron is firing spontaneously or that it is firing under the influence of other neurons. Suppose that the data available are the firing times of the neurons present. An “integrate several inputs and fire model” is developed and studied empirically. For the model a neuron’s firing occurs when an internal state variable crosses a random threshold. This conceptual model leads to maximum likelihood estimates of internal quantities, such as the postsynaptic potentials of the measured influencing neurons, the membrane potential, the absolute threshold and also estimates of derived quantities such as the strength-duration curve and the recovery process of the threshold. The model’s validity is examined via an estimate of the conditional firing probability.
Reviewer: Reviewer (Berlin)

92Cxx Physiological, cellular and medical topics
Full Text: DOI
[1] Baker RJ, Nelder JA (1978) The GLIM system. Numerical algorithms group, Oxford
[2] Boogaard H van den (1987) Maximum likelihood estimations in a nonlinear self-exciting point process model. Biol Cybern 55:219–225 · Zbl 0623.62080
[3] Boogaard H van den, Hesselmans G, Johannesma P (1986) System identification based on point processes and correlation densities. I. The nonrefractory neuron model. Math Biosci 80:143–171 · Zbl 0613.92013 · doi:10.1016/0025-5564(86)90042-8
[4] Borisyuk GN, Borisyuk RM, Kirillov AB, Kovalenko EI, Kryukov VI (1985) A new statistical method for identifying interconnections between neuronal network elements. Biol Cybern 52:301–306 · Zbl 0576.92016 · doi:10.1007/BF00355752
[5] Brillinger DR (1975) The identification of point process systems. Ann Probab 3:909–929 · Zbl 0348.60076 · doi:10.1214/aop/1176996218
[6] Brillinger DR, Preisler HK (1986) Two examples of quantal data analysis: a) multivariate point process, b) pure death process in an experimental design. Proceedings of the XIII International Biometric Conference, Seattle, pp 94–113
[7] Brillinger DR, Segundo JP (1979) Empirical examination of the threshold model of neuron firing. Biol Cybern 35:213–220 · doi:10.1007/BF00344204
[8] Brillinger DR, Bryant HL, Segundo JP (1976) Identification of synaptic interactions. Biol Cybern 22:213–228 · Zbl 0322.92011 · doi:10.1007/BF00365087
[9] Bryant HL, Marcos AR, Segundo JP (1973) Correlation of neuronal spike discharges produced by monosynaptic connections and by common inputs. J Neurophysiol 36:205–225
[10] Cox DR, Lewis PAW (1966) The statistical analysis of series of events. Wiley, New York · Zbl 0148.14005
[11] Cuzick J (1981) Boundary crossing probabilities for stationary Gaussian processes and Brownian motion. Trans Am Math Soc 263:469–492 · Zbl 0463.60034 · doi:10.1090/S0002-9947-1981-0594420-5
[12] Dzhaparidze K (1985) On asymptotic inference about intensity parameters of a counting process. Bull Int Statist Inst 51:1–15 · Zbl 0647.62082
[13] Gerstein GL, Perkel DH (1972) Mutual relationships among neuronal spike trains. Biophys J 12:453–473 · doi:10.1016/S0006-3495(72)86097-1
[14] Gerstein GL, Perkel DH, Subramanian KN (1978) Identification of functionally related neural assemblies. Brain Res 140:43–62 · doi:10.1016/0006-8993(78)90237-8
[15] Gestri G (1971) Pulse frequency modulation in neural systems. Biophys J 11:98–109 · doi:10.1016/S0006-3495(71)86198-2
[16] Hagiwara S (1954) Analysis of interval fluctuation of the sensory nerve impulse. Jpn J Physiol 4:234–240
[17] Holden AV (1976) Models for the stochastic activity of neurones. Springer, Berlin Heidelberg New York · Zbl 0353.92001
[18] Hoopen M ten, Hertog A den, Reuver HA (1963) Fluctuation in excitability of nerve studies – a model study. Kybernetik 2:1–8
[19] Johannesma PIM (1968) Diffusion models for the stochastic activity of neurons. In: EK Caraniello (ed) Neural networks. Springer, Berlin Heidelberg New York, pp 116–144
[20] Knight BW (1972) Dynamics of encoding in a population of neurons. J Gen Physiol 59:734–766 · doi:10.1085/jgp.59.6.734
[21] Knox CK (1974) Cross-correlation functions for a neural model. Biophys J 14:567–582 · doi:10.1016/S0006-3495(74)85936-9
[22] Knox CK, Kubota S, Poppele RE (1977) A determination of excitability changes in dorsal spinocerebellar tract neurons from spike-train analysis. J Neurophysiol 40:626–646
[23] Langmoen IA, Andersen P (1983) Summation of excitatory postsynaptic potentials in hippocampol pyramidal cells. J Neurophysiol 50:1320–1329
[24] Lewis PAW (ed) (1972) Stochastic point processes. Wiley, New York · Zbl 0238.00014
[25] McCullogh WS, Pitts WH (1943) A logical calculus of ideas immanent in nervous activity. Bull Math Biophys 5:115–133 · Zbl 0063.03860 · doi:10.1007/BF02478259
[26] Melssen WJ, Epping WJM (1987) Detection and estimation of neural connectivity based on crosscorrelation analysis. Biol Cybern 57:403–414 · doi:10.1007/BF00354985
[27] Nakao M, Hara K-i, Kimura M, Sato R (1985) Identification and estimation algorithm for stochastic neural system. II. Biol Cybern 52:71–78 · Zbl 0561.92008 · doi:10.1007/BF00363997
[28] Ogata Y, Akaike H, Katsura K (1982) The application of linear intensity models to the investigation of causal relations between a point process and another stochastic process. Ann Inst Statist Math 34:373–387 · Zbl 0516.62085 · doi:10.1007/BF02481037
[29] Perkel DH, Gerstein GL, Smith MS, Tatton WG (1975) Nerveimpulse patterns: a quantitative display technique for three neurons. Brain Res 100:271–290 · doi:10.1016/0006-8993(75)90483-7
[30] Ricciardi LM, Ventriglia F (1970) Probabilistic models for determining the input-output relationship in formalized neurons. I. A theoretical approach. Kybernetik 7:175–1183 · doi:10.1007/BF00289404
[31] Sagalovsky BD (1982) Maximum likelihood and related estimation methods in point processes and point process systems. Ph. D. Thesis, University of California, Berkeley
[32] Sampath G, Srinivasan SK (1977) Stochastic models for spike trains of single neurons. Springer, Berlin Heidelberg New York · Zbl 0381.92002
[33] Snyder DL (1975) Random point processes. Wiley, New York
[34] Stevens CF (1968) Synaptic physiology. Proc IEEE 56:916–930 · doi:10.1109/PROC.1968.6444
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.