zbMATH — the first resource for mathematics

Morse theory for some lower-\(C^ 2\) functions in finite dimension. (English) Zbl 0646.49029
The author proves the Morse inequalities for quadratically minorized (i.e., \(f(x)\geq\) const. + const.\(| x|^ 2)\) real-valued lower- \(C^ 2\) functions (i.e. f is representable as a maximum of a family of \(C^ 2\)-smooth functions) defined on open subsets of a finite- dimensional Hilbert space under the assumption that the critical points of f are strongly nondegenerate (a difficult concept not explained here) and \(f^{-1}([a,b])\) are compact subsets for all \(a,b\in {\mathbb{R}}\). The method is based on the Moreau-Yosida approximations \(f_{\epsilon}(x)=\inf_{w}(f(w)+| x-w|^ 2/2\epsilon)\) which are \(C^ 2\)-smooth and preserve the critical points together with certain generalized Morse index (a new concept for the lower-\(C^ 2\) functions), thus reducing the problem to the classical case.
Reviewer: J.Chrastina

58E05 Abstract critical point theory (Morse theory, Lyusternik-Shnirel’man theory, etc.) in infinite-dimensional spaces
49J45 Methods involving semicontinuity and convergence; relaxation
90C30 Nonlinear programming
Full Text: DOI
[1] H. Attouch,Variational convergence (Pittmann, 1984).
[2] D.P. Bertsekas, ”Convexification procedures and decomposition method for nonconvex optimization problems,”Journal of Optimization Theory and Applications 29 (1979) 169–197). · Zbl 0389.90080 · doi:10.1007/BF00937167
[3] M.L. Bougeard, ”Contribution à la théorie de Morse en dimension finie,” thèse de 3ème cycle, Université Paris-Dauphine (75775 Paris, 1978).
[4] M.L. Bougeard,Contribution à la Théorie de Morse, Cahier Ceremade, Université Paris-Dauphine (75775 Paris, 1979).
[5] M.L. Bougeard, ”About critical points of some lowerC 2 functions,” in: C. Lemarechal, ed.,Third Franco-German Conference in Optimization (I.N.R.I.A., 78153 Le Chesnay, France, 1984) pp. 12–16.
[6] M.L. Bougeard and J.P. Penot, ”Approximation and decomposition properties of some classes of locally d.c. functions” (preprint, Université Pau, 1985). · Zbl 0666.49005
[7] H. Brezis,Opérateurs Maximaux Monotones (Lecture Notes 5 North-Holland, 1973).
[8] F.H. Clarke, ”Generalized gradients and applications,”Transactions of the American Mathematical Society 205 (1975) 247–262. · Zbl 0307.26012 · doi:10.1090/S0002-9947-1975-0367131-6
[9] A. Douady, ”Arrondissement des arêtes,” in:Séminaire Henri Cartan (Topologie Différentielle) 14 (3) (1961–62) 3.1–3.25.
[10] I. Ekeland and J.M. Lasry, ”On the number of periodic trajectories for a hamiltonian flow,”Annals of Mathematics 112 (1980) 283–319. · Zbl 0449.70014 · doi:10.2307/1971148
[11] O. Fujiwara, ”A note on differentiability of global optimal values,”Mathematics of Operations Research 10 (4) (1985) 612–618. · Zbl 0591.49018 · doi:10.1287/moor.10.4.612
[12] J.B. Hiriart-Urruty, ”Generalized differentiability, duality and optimization for problems dealing with differences of convex functions,” lecture given in Groningen (preprint, Université Toulouse, 1984).
[13] R. Janin, ”Sur la dualité et la sensibilité dans les problèmes de programmes mathématiques,” thèse d’état, Université Paris VI (Paris, 1974).
[14] H. Th. Jongen, P. Jonker and F. Twilt, ”Nonlinear optimization inR n , Morse theory, Chebyschev Approximation,” in:Methoden and Verfahren der Mathematischen Physik, vol. 29 (Peter Lang Verlag, Frankfurt, 1983). · Zbl 0527.90064
[15] H. Th. Jongen and G. Zwier, ”On structural analysis in semi-infinite Optimization,” in: C. Lemarechal, ed.,Third Franco-German Conference in Optimization (I.N.R.I.A. 78153 Le Chesnay, France 1984) pp. 56–67. · Zbl 0582.90079
[16] H. Th. Jongen and G. Zwier, ”On regular semi-infinite Optimization,” in: E.J. Anderson and A.B. Philpott, eds.,Infinite Programming, Lecture Notes in Economics and Mathematical Systems, Vol. 259 (Springer-Verlag, Berlin, 1985) pp. 53–64. · Zbl 0582.90079
[17] C. Malivert, ”Méthode de descente sur un fermé non convexe,”Bulletin de la Société Mathématique de France 60 (1979) 113–124. · Zbl 0416.49020
[18] C. Malivert, J.P. Penot and M. Thera, ”Minimisation d’une fonction régulière sur un fermé régulier non convexe,”Comptes Rendus de l’Académie des Sciences Paris A (1978) 1191–1193. · Zbl 0382.58010
[19] J.P. Penot, ”Sous-differentiels de fonctions numériques non convexes,”Comptes Rendus de l’Acadmie des Sciences Paris A 278 (1974) 1153–1155.
[20] J.P. Penot, private communication (1985).
[21] A. Pommelet, ”Analyse convexe et théorie de Morse,” thèse 3ème cycle, Université Paris-Dauphine, (Paris, 1982).
[22] B.N. Pshenichny,Necessary Conditions for an Extremum (M. Dekker, New York, 1971).
[23] R.T. Rockafellar, ”Augmented Lagrangians and applications of the proximal point algorithm in convex programming,”Mathematics of Operations Research 1 (1976) 97–116. · Zbl 0402.90076 · doi:10.1287/moor.1.2.97
[24] R.T. Rockafellar, ”Favorable classes of lipschitz continuous functions in subgradient optimization,” in: E. Nurminski, ed.,Progress in Nondifferentiable Optimization (I.I.A.S.A., Laxenburg, Austria, 1982) pp. 125–143. · Zbl 0511.26009
[25] J.T. Schwartz,Nonlinear Functional Analysis (Gordon and Breach, New York, 1969).
[26] J.P. Vial, ”Strong and weak convexity of sets and functions,”Mathematical Operations of Research 8 (1983) 231–257. · Zbl 0526.90077 · doi:10.1287/moor.8.2.231
[27] Y. Yomdin, ”On functions representable as a supremum of smooth functions,”SIAM Journal of Mathematical Analysis 14 (1983) 239–246. · Zbl 0524.26010 · doi:10.1137/0514020
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.