# zbMATH — the first resource for mathematics

The existence of gaps in minimal foliations. (English) Zbl 0645.58017
Harmonic functions $$v: {\mathbb{R}}^ n\to {\mathbb{R}}$$ minimize the Dirichlet integral $$\int | v_ x|$$ 2 dx with respect to compactly supported variations of v. So, for fixed slope $$\alpha\in {\mathbb{R}}^ n$$ the graphs of the affine functions $$v(x)=\alpha \cdot x+v_ 0$$, $$v_ 0\in {\mathbb{R}}$$, constitute a minimal foliation with respect to the Dirichlet integral. Following J. Moser [Ann. Inst. Henri Poincaré, Anal. Non Linéaire 3, 229-272 (1986; Zbl 0609.49029)] we generalize the Dirichlet integrands $$| v_ x|^ 2$$ to integrands $$F: {\mathbb{R}}^ n\times {\mathbb{R}}\times {\mathbb{R}}^ n\to {\mathbb{R}}$$ and consider F-minimal functions $$v: {\mathbb{R}}^ n\to {\mathbb{R}}$$ defined by the property that $\int_{{\mathbb{R}}^ n}\{F(x,v+\phi,v_ x+\phi_ x)- F(x,v,v_ x)\}dx\geq 0$ for all compactly supported $$\phi: {\mathbb{R}}^ n\to {\mathbb{R}}$$. Our main hypothesis is that F be $${\mathbb{Z}}$$-periodic in the first $$n+1$$ variables. Under appropriate growth conditions on F, Moser proves the existence of sets $$\mu_{\alpha}^{rec}(F)$$ of F-minimal functions which are natural generalizations of the sets $$\mu_{\alpha}^{rec}(F_ 0)=\{v|$$ $$v(x)=\alpha \cdot v+v_ 0$$, $$v_ 0\in {\mathbb{R}}\}$$ for the Dirichlet integrand $$F_ 0(x,v,v_ x)=| v_ x|^ 2$$. However, instead of forming a foliation, the graphs of the functions $$v\in \mu_{\alpha}^{rec}(F)$$ might only form a lamination, i.e. a foliation with gaps. The purpose of this paper is to exhibit examples of integrands F such that these gaps really do occur for all $$\alpha\in {\mathbb{R}}^ n$$ with $$| \alpha |$$ smaller than some arbitrary constant.
 [1] Aubry, S.,The twist map, the extended Frenkel-Kontorova model and the devil’s staircase. Physica7D (1983), 240–258. · Zbl 0559.58013 [2] Bangert, V.,Mather sets for twist maps and geodesics on tori. Dynamics Reported, Vol. 1 (in press). · Zbl 0664.53021 [3] Bangert, V.,A uniqueness theorem for $$\mathbb{Z}$$ n -periodic variational problems. Comment. Math. Helv.62 (1987) (in press). · Zbl 0634.49018 [4] Bokowski, J. andSperner, E.,Zerlegung konvexer Körper durch minimale Trennflächen. J. Reine Angew. Math.311/312 (1979), 80–100. · Zbl 0415.52008 [5] Courant, R.,Dirichlet’s principle, conformal mapping and minimal surfaces. Interscience, New York, 1950. · Zbl 0040.34603 [6] Federer, H.,Geometric measure theory. (Grundlehren math. Wiss. Vol. 153). Springer, Berlin–Heidelberg–New York, 1969. · Zbl 0176.00801 [7] Hedlund, G. A.,Geodesics on a two-dimensional Riemannian manifold with periodic coefficients. Ann. of Math.33 (1932), 719–739. · JFM 58.1256.01 [8] John, F.,Partial Differential Equations, 3rd Ed. Springer, New York–Heidelberg–Berlin, 1980. · Zbl 0468.15015 [9] MacKay, R. S. andPercival, I. C.,Converse KAM: Theory and practice. Comm. Math. Phys.98 (1985), 301–311. · Zbl 0585.58032 [10] Mather, J. N. Non-existence of invariant circles. Erg. Th. Dynam. Sys.4 (1984), 301–309. · Zbl 0557.58019 [11] Mather, J. N.,A criterion for the non-existence of invariant circles. Inst. Hautes Études Sci. Publ. Math.63 (1986), 153–204. · Zbl 0603.58028 [12] Moser, J.,Monotone twist mappings and the calculus of variation. Ergodic Theory Dynamical Systems6 (1986), 325–333. [13] Moser, J.,Break-down of stability. In: Lect. Notes in Physics Vol. 247, J. M. Jowett, M. Month and S. Turner, Eds., Springer, Berlin–New York, 1986, pp. 492–518. [14] Moser, J. Recent developments in the theory of Hamiltonian systems. SIAM Review28 (1986), 459–485. · Zbl 0606.58022 [15] Moser, J. Minimal solutions of variational problems on torus, Ann. Inst. H. Poincaré (Analyse non linéaire)3 (1986), 229–272. [16] Simon, L. Lectures on geometric meaure theory. Proc. Centre Math. Analysis, Vol. 3. Australian National University, Canberra, 1983. · Zbl 0546.49019 [17] Solomon, B.,On foliations of $$\mathbb{R}$$ n+1 by minimal hypersurfaces. Comment. Math. Helv.61 (1986), 67–83. · Zbl 0601.53025