zbMATH — the first resource for mathematics

Characterizations of Besov-Hardy-Sobolev spaces: A unified approach. (English) Zbl 0644.46017
From the introduction. This paper deals with the Besov-Hardy-Sobolev spaces \(B^ s_{p,q}(R_ n)\) and \(F^ s_{p,q}(R_ n)\) on the euclidean n-space \(R_ n\). It is a self-containing survey about a special aspect, the theory of equivalent norms and quasi-norms in these spaces. In [Theory of function spaces (1983; Zbl 0546.46027)] we dealt extensively with characterizations of the spaces considered via rather different means: differences \((\Delta^ M_ hf)(x)\) and derivatives \((D^{\alpha}f)(x)\) of functions, several types of mean values of differences of functions, traces of harmonic functions, and temperatures in \(R^+_{n+1}=\{(x,t)| x\in R_ n,t>0\}\) on the hyperplane \(t=0\), etc. In [loc. cit.] we used specific tools for different characterizations. One aim of the present paper is to demonstrate that these different characterizations can be obtained from a unified point of view. The second aim of this paper is to extend the previous results. For that purpose we introduced weighted means of differences and derivatives of functions and distributions, which give also the possibility to characterize spaces \(B^ s_{p,q}(R_ n)\) and \(F^ s_{p,q}(R_ n)\) with negative smoothness s and to establish a localization principle for all these spaces in a rather easy way.
Reviewer: J.Wloka

46E35 Sobolev spaces and other spaces of “smooth” functions, embedding theorems, trace theorems
Full Text: DOI
[1] Boman, J, Equivalence of generalized moduli of continuity, Ark. mat., 18, 73-100, (1980) · Zbl 0459.41008
[2] Bui, H.-Q, On Besov, Hardy and Triebel spaces for 0 < p ⩽ 1, Ark. mat., 21, 169-184, (1983) · Zbl 0539.46023
[3] Bui, H.-Q, Characterizations of weighted Besov and Triebel-Lizorkin spaces via temperatures, J. funct. anal., 55, 39-62, (1984) · Zbl 0638.46029
[4] Butzer, P.L; Berens, H, Semi-groups of operators and approximation, () · Zbl 0164.43702
[5] Coifman, R.R; Meyer, Y; Stein, E.M, Un nouvel espace adapté a l’étude des opérateurs définis par des intégrales singulières, (), 1-15
[6] Coifman, R.R; Meyer, Y; Stein, E.M, Some new function spaces and their applications to harmonic analysis, J. funct. anal., 62, 304-335, (1985) · Zbl 0569.42016
[7] Fefferman, C; Stein, E.M, Some maximal inequalities, Amer. J. math., 93, 107-115, (1971) · Zbl 0222.26019
[8] Kaljabin, G.A, Characterizations of functions of spaces of Besov-Lizorkin-Triebel type, Dokl. akad. nauk SSSR, 236, 1056-1059, (1977), [Russian] · Zbl 0396.46032
[9] Kaljabin, G.A, The description of functions of classes of Besov-Lizorkin-Triebel type, Trudy mat. inst. stekl., 156, 82-109, (1980), [Russian] · Zbl 0455.46036
[10] Madych, W.R; Rivière, N.M, Multipliers of the Hölder classes, J. funct. anal., 21, 369-379, (1976) · Zbl 0338.46035
[11] Nikol’skij, S.M, Approximation of functions of several variables and imbedding theorems, (1977), Nauka Moskva, [Russian. English translation of the first edition, Springer-Verlag, Berlin/Heidelberg/New York, 1975] · Zbl 0496.46020
[12] Päivärinta, L, On the spaces Lpa(lq): maximal inequalities and complex interpolation, (), Helsinki
[13] Päivärinta, L, Eine bemerkung zu den Räumen Lpa(lq); monotonie der Littlewood-Paley’schen maximalfunktionen, Reports dep. math. univ. Helsinki, “notes on functional analysis”, 13-17, (1980), Helsinki
[14] Päivärinta, L, Equivalent quasi-norms and Fourier multipliers in the Triebel spaces Fp,qs, Math. nachr., 106, 101-108, (1982) · Zbl 0503.42014
[15] Peetre, J, New thoughts on Besov spaces, () · Zbl 0356.46038
[16] \scN. M. Rivière, Classes of smoothness, the Fourier method, unpublished Lecture Notes.
[17] Shapiro, H.S, A Tauberian theorem related to approximation theory, Acta math., 120, 279-292, (1968) · Zbl 0165.13801
[18] Shapiro, H.S, Topics in approximation theory, () · Zbl 0213.08501
[19] Schmeisser, H.-J; Triebel, H, Topics in Fourier analysis and function spaces, (1987), Wiley Chichester/New York · Zbl 0661.46024
[20] Triebel, H, Interpolation theory, function spaces, differential operators, (1978), North-Holland Amsterdam/New York/Oxford · Zbl 0387.46032
[21] Triebel, H, Fourier analysis and function spaces, () · Zbl 0661.46024
[22] Triebel, H, Theory of function spaces, (1983), Birkhäuser-Verlag Boston, Akademische Verlagsgesellschaft Geest & Portig, Leipzig, 1983 · Zbl 0546.46028
[23] Triebel, H, Characterizations of Besov-Hardy-Sobolev spaces via harmonic functions, temperatures and related means, J. approx. theory, 35, 275-297, (1982) · Zbl 0487.46013
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.