×

zbMATH — the first resource for mathematics

Microstructual thermal stresses in ceramic materials. (English) Zbl 0637.73008
Summary: The problem addressed concerns the analytical characterization of the state of residual stress in a polycrystalline ceramic material following cooling from the fabrication temperature. It is shown that, under mild assumptions on the behavior and microstructure of the material, the covariance matrix of the microstructural residual stresses can be obtained in closed form from the equations of elasticity. The analysis does not take thermally induced microcracking into consideration and the solid is idealized as remaining essentially intact during the cooling process. However, the results so obtained are subsequently used to derive first-order estimates of microcrack densities.

MSC:
74F05 Thermal effects in solid mechanics
82D25 Statistical mechanics of crystals
74A15 Thermodynamics in solid mechanics
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Beran, M.J., Nuovo cim., 38, 771, (1965)
[2] Blendell, J.E.; Coble, R.L., J. am. ceram. soc., 65, 174, (1982)
[3] Boas, W.; Honeycombe, R.W.K., Nature, 153, 495, (1944)
[4] Buessem, W.R.; Cross, L.E.; Goswami, A.K., J. am. ceram. soc., 49, 1, (1966)
[5] Buessem, W.R.; Lange, F.F., Interceram., 15, 229, (1966)
[6] Case, E.D.; Smyth, J.R.; Hunter, O., J. mater. sci., 15, 149, (1980)
[7] Chernov, L.A., Wave propagation in a random medium, () · Zbl 0091.41202
[8] Clarke, F.J.P., Acta metall., 12, 139, (1964)
[9] Cleveland, J.J.; Bradt, R.C., J. am. ceram. soc., 61, 478, (1978)
[10] Davidge, R.W.; Green, T.J., J. mater. sci., 3, 629, (1968)
[11] Dole, S.L.; Hunter, O.; Calderwood, F.W.; Bray, D.J., J. am. ceram. soc., 61, 241, (1976)
[12] Evans, A.G., Acta metall., 26, 1845, (1978)
[13] Feller, W., ()
[14] Fu, Y.; Evans, A.G., Acta metall., 33, 1515, (1985)
[15] Gilbert, E.N., Ann. math. stat., 33, 958, (1962)
[16] Johnson, W.A.; Mehl, R.F., Trans. A.I.M.M.E., 135, 416, (1939)
[17] Kingery, W.D.; Bowen, H.K.; Uhlmann, D.R., Introduction to ceramics, ()
[18] Kroner, E., Z. phys., 151, 504, (1958)
[19] Krstic, V.D., J. am. ceram. soc., 67, 589, (1984)
[20] Kuszyk, J.A.; Bradt, R.C., J. am. ceram. soc., 56, 420, (1973)
[21] Likhachev, V.A., Soviet phys-solid st., 3, 1330, (1961)
[22] Ortiz, M., Int. J. engr. sci., 25, 923, (1987)
[23] Pohanka, R.C.; Rice, R.W.; Walker, B.E., J. am. ceram. soc., 59, 71, (1976)
[24] Rice, R.W.; Pohanka, R.C., J. am. ceram. soc., 62, 559, (1979)
[25] Rice, R-W.; Freiman, S.W., J. am. ceram. soc., 64, 350, (1981)
[26] Siebeneck, H.J.; Hasselman, D.P.H., J. am. ceram. soc., 59, 241, (1976)
[27] Singh, J.P.; Virkar, A.V.; Shetty, D.K.; Gordon, R.S., J. am. ceram. soc., 62, 179, (1979)
[28] Sneddon, I.N., Crack problems in the classical theory of elasticity, () · Zbl 0175.22202
[29] Talbot, D.R.S.; Willis, J.R., Int. J. solids structures, 18, 685, (1982)
[30] Tvergaard, V.; Hutchinson, J.W., Micro-cracking in ceramics induced by thermal expansion or elastic anisotropy, () · Zbl 0800.73093
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.