Linearization and normal form of the Navier-Stokes equations with potential forces. (English) Zbl 0635.35075

A normalization theory for the incompressible Navier-Stokes equations with potential body forces is derived by means of a global asymptotic expansion of a solution as time goes to infinity. The normal form is an equation in a suitable Frechet space, whose nonlinear terms correspond to resonances in the spectrum of the Stokes operator. The normalization mapping is globally defined, analytic, one to one. It is also shown that the analogue of this normalization mapping for the Burgers equation can be explicitly computed in terms of the Cole-Hopf transform.
Reviewer: Y.R.Romanovsky


35Q30 Navier-Stokes equations
35C20 Asymptotic expansions of solutions to PDEs
76D05 Navier-Stokes equations for incompressible viscous fluids
Full Text: DOI Numdam EuDML


[1] Arnold, V., Geometrical methods in the theory of ordinary differential equations, (1983), Springer-Verlag New York · Zbl 0507.34003
[2] Berger, M. S.; Church, P. T.; Timourian, J. G., Integrability of nonlinear differential equations via functional analysis, Proc. Symp. Pure Math., t. 45, Part I, 117-123, (1986) · Zbl 0592.58038
[3] Bourbaki, N., Variétés différentiables et analytiques, § 1-7, (1967), Hermann Paris, Fascicule de résultats · Zbl 0171.22004
[4] Cattabriga, L., Su un problema al contorno relativo al sistema di equazione di Stokes, Rend. Mat. Sem. Univ. Padova, t. 31, 308-340, (1961) · Zbl 0116.18002
[5] Constantin, P.; Foias, C., Global Lyapunov exponents, kaplan Yorke formulas and the dimension of the attractors for 2D Navier-Stokes equations, Comm. Pure Appl. Math., t. XXXVII, 1-28, (1985) · Zbl 0582.35092
[6] Foias, C., Solutions statistiques des équations de Navier-Stokes, (1974), Cours au Collège de France
[7] Foias, C.; Saut, J. C., Asymptotic behavior, as t → +∞ of solutions of Navier-Stokes equations and nonlinear spectral manifolds, Indiana Univ. Math. J., t. 33, 3, 459-471, (1984) · Zbl 0565.35087
[8] Foias, C.; Saut, J. C., On the smoothness of the nonlinear spectral manifolds of Navier-Stokes equations, Indiana Univ. Math. J., t. 33, 6, 911-926, (1984) · Zbl 0572.35081
[9] Foias, C.; Saut, J. C., Transformation fonctionnelle linéarisant LES équations de Navier-Stokes, C. R. Acad. Sci. Paris, Série I, Math., t. 295, 325-327, (1982) · Zbl 0545.35074
[10] C. Foias, J. C. Saut, Remarks on the spectrum of some self-adjoint operators, in preparation. · Zbl 0572.35081
[11] Gardner, C.; Greene, J.; Kruskal, M.; Miura, R., Korteweg de Vries equations, VI: methods for exact solution, Comm. Pure Appl. Math., t. 27, 97-133, (1974) · Zbl 0291.35012
[12] Ghidaglia, J. M., Long time behavior of solutions of abstract inequalities. application to thermohydraulic and M. H. D. equations, J. Diff. Eq., t. 61, 2, 268-294, (1986) · Zbl 0549.35102
[13] Guillope, C., Remarques à propos du comportement lorsque t → ∞, des solutions des équations de Navier-Stokes associées à une force nulle, Bull. Soc. Math. France, t. 111, 151-180, (1983) · Zbl 0554.35098
[14] Hopf, E., The partial differential equation u_{t} + uu_{x} = μu_{xx}, Comm. Pure Appl. Math., t. 3, 201-230, (1950)
[15] Minea, G., Remarques sur l’unicité de la solution stationnaire d’une équation de type Navier-Stokes, Revue Roumaine Math. Pures Appl., t. 21, 1071-1075, (1976) · Zbl 0365.76027
[16] Nikolenko, N. V., Complete integrability of the nonlinear Schrödinger equation, Soviet Math. Dokl., t. 17, 2, 398-402, (1976) · Zbl 0346.35039
[17] Nikolenko, N. V., On the complete integrability of the nonlinear Schrödinger equation, Funct. Anal. and Appl., t. 10, 3, 209-220, (1976) · Zbl 0345.35027
[18] Nikolenko, N. V., Invariant asymptotically stable tori of the perturbed KdV equation, Russian Math. Surveys, t. 35, 5, 139-207, (1980) · Zbl 0467.35077
[19] Scott, A.; Chu, F.; Mclaughlin, D., The soliton: a new concept in applied science, Proc. IEEE, t. 61, 1443-1483, (1973)
[20] Solonnikov, V. A., On general boundary value problems for elliptic systems in the sense of Douglas-Nirenberg, I, Izv. Akad. Nauk SSSR, Ser. Mat., t. 28, 665-706, (1964) · Zbl 0128.33003
[21] Temam, R., Navier-Stokes equations. theory and numerical analysis, (1979), North-Holland Amsterdam · Zbl 0426.35003
[22] Temam, R., Navier-Stokes equations and nonlinear functional analysis, (1983), SIAM Philadelphia, NSF/CMBS Regional Conferences Series in Applied Mathematics · Zbl 0522.35002
[23] Whitham, G., Linear and nonlinear waves, (1974), John Wiley New York · Zbl 0373.76001
[24] Yudovich, V. I.; Vorovich, I. I., Stationnary flows of incompressible viscous fluids, Math. Sborn., t. 53, 393-428, (1961)
[25] Zehnder, E., Siegel’s linearization theorem in infinite dimension, Manuscripta Math., t. 23, 363-371, (1978) · Zbl 0374.47037
[26] H. Poincaré, Thèse Paris, 1879; reprinted.
[27] Dulac, H., Solutions d’un système d’équations différentielles dans le voisinage des valeurs singulières, Bull. Soc. Math. France, t. 40, 324-383, (1912) · JFM 43.0391.01
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.