# zbMATH — the first resource for mathematics

On the codegree of negative multiples of the Hopf bundle. (English) Zbl 0633.55014
Let H be the Hopf line bundle over $${\mathbb{C}}P^{k-1}$$ and $$cd({\mathbb{C}}^ n-nH, {\mathbb{C}}P^{k-1})$$ the codegree of $${\mathbb{C}}^ n-nH.$$ Consider a fixed prime p. Denoting by $$\nu_ p(m)$$ the power of p in m, set $$cd_ p=\nu_ p(cd)$$. To determine $$cd_ p({\mathbb{C}}^ n-nH, {\mathbb{C}}P^{k- 1})$$ the authors use the cohomology theory $$j^*$$ which fits into the exact sequence $\to \quad j^*(-)\quad \to \quad kO^*(- )_{(p)}\quad \to \quad k Spin^*(-)_{(p)}\quad \to \quad.$ Theorem: Let $$1\leq n\leq k$$. Then the codegree $$cd_ p({\mathbb{C}}^ n-nH, {\mathbb{C}}P^{k-1})$$ is equal to the j-theory codegree $$cd^ j_ p({\mathbb{C}}^ n-nH, {\mathbb{C}}P^{k-1}).$$ From this result one obtains explicit formulas for $$n=1$$ and $$n=2$$. Finally the authors discuss various quaternionic analogues of the above theorem.
Reviewer: R.Kultze

##### MSC:
 55R50 Stable classes of vector space bundles in algebraic topology and relations to $$K$$-theory 55R25 Sphere bundles and vector bundles in algebraic topology 55Q50 $$J$$-morphism
Full Text:
##### References:
 [1] DOI: 10.2307/1970717 · Zbl 0164.24301 [2] DOI: 10.1007/BF02566716 · Zbl 0278.55006 [3] DOI: 10.1093/qmath/17.1.165 · Zbl 0144.44901 [4] DOI: 10.2206/kyushumfs.38.277 · Zbl 0563.55004 [5] DOI: 10.2977/prims/1195180875 · Zbl 0556.55007 [6] DOI: 10.1007/BFb0088075 [7] Knapp, Some applications of (1979) [8] James, The Topology of Stiefel Manifolds (1976) · Zbl 0337.55017 [9] DOI: 10.1112/plms/s3-9.1.115 · Zbl 0089.39401 [10] DOI: 10.1007/BF01367581 · Zbl 0346.57021 [11] Crabb, Homotopy Theory and Related Topics 9 pp 319– (1987) [12] DOI: 10.1017/S0013091500017831 · Zbl 0614.55012 [13] DOI: 10.1112/jlms/s2-35.2.353 · Zbl 0627.55013 [14] Crabb, Z/2-Homotopy Theory (1980) · Zbl 0443.55001 [15] DOI: 10.2307/1970715 · Zbl 0164.24001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.