×

zbMATH — the first resource for mathematics

Vector two-point functions in maximally symmetric spaces. (English) Zbl 0632.53060
We obtain massive and massless vector two-point functions in maximally symmetric spaces (and vacua) of any number of dimensions. These include de Sitter space and anti-de Sitter space, and their Euclidean analogs \(S^ n\) and \(H^ n\). Our method is based on a simple way of constructing every possible maximally symmetric bitensor \(T_{a...bc'...d'}(x,x')\) which carries tangent-space indices a...b at x and c’...d’ at x’.

MSC:
53B50 Applications of local differential geometry to the sciences
53B30 Local differential geometry of Lorentz metrics, indefinite metrics
83C99 General relativity
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Nachtmann, O.: Quantum theory in de-Sitter space. Commun. Math. Phys.6, 1-16 (1967) · Zbl 0163.21803
[2] Chernikov, N.A., Tagirov, E.A.: Quantum theory of scalar field in de Sitter space-time. Ann. Inst. Henri PoincaréIX, 109-141 (1968) · Zbl 0162.57802
[3] Géhéniau, J., Schomblond, Ch.: Fonctions de Green dans l’Univers de de Sitter. Bull. Cl. Sci., V. Ser., Acad. R. Belg.54, 1147-1157 (1968)
[4] Tagirov, E.A.: Consequences of field quantization in de Sitter type cosmological models. Ann. Phys.76, 561-579 (1973)
[5] Candelas, P., Raine, D.J.: General-relativistic quantum field theory: an exactly soluble model. Phys. Rev. D12, 965-974 (1975)
[6] Dowker, J.S., Critchley, R.: Scalar effective Lagrangian in de Sitter space. Phys. Rev. D13, 224-234 (1976)
[7] Schomblond, Ch., Spindel, P.: Conditions d’unicité pour le propagateur ?1(x, y) du champ scalaire dans l’univers de de Sitter. Ann. Inst. Henri PoincaréXXV, 67-78 (1976) · Zbl 0356.53010
[8] Bunch, T.S., Davies, P.C.W.: Quantum field theory in de Sitter space: renormalization by point-splitting. Proc. R. Soc. Lond. A360, 117-134 (1978)
[9] Warner, N.P.: Green functions onCP n. Proc. R. Soc. Lond. A383, 207-216 (1982) · Zbl 0505.35027
[10] Hawking, S.W., Ellis, G.F.R.: The large scale structure of space-time. London: Cambridge University Press 1980 · Zbl 0265.53054
[11] Weinberg, S.: Gravitation and cosmology. New York: Wiley 1972 · Zbl 0256.05105
[12] Synge, J.L.: Relativity: the general theory. Amsterdam: North-Holland 1960 · Zbl 0090.18504
[13] Abramowitz, M., Stegun, I.A.: Handbook of mathematical functions. Washington, D.C.: U.S. Government Printing Office 1972 · Zbl 0543.33001
[14] Erdelyi, A.: Higher transcendental functions. Malabar: Krieger 1981
[15] Allen, B.: Vacuum states in de Sitter space [to appear in Phys. Rev. D32 (1985)]
[16] Burges, C.J.C.: The de Sitter vacuum. Nucl. Phys. B247, 533-543 (1984)
[17] Gibbons, G.W., Hawking, S.W.: Cosmological event horizons, thermodynamics, and particle creation. Phys. Rev. D15, 2738-2751 (1977)
[18] Avis, S.J., Isham, C.J., Storey, D.: Quantum field theory in anti-de Sitter space-time. Phys. Rev. D18, 3565-3576 (1978)
[19] Breitenlohner, P., Freedman, D.: Stability in gauged extended supergravity. Ann. Phys.144, 249-281 (1982) · Zbl 0606.53044
[20] Burgess, C.P., Lütken, C.A.: Propagators and effective potentials in anti-de Sitter space. Phys. Lett.153 B, 137-141 (1985)
[21] Itzykson, C., Zuber, J.B.: Quantum field theory. New York: McGraw-Hill 1980 · Zbl 0453.05035
[22] Najimi, A.H., Ottewill, A.C.: Quantum states and the Hadamard form. I. Phys. Rev. D30, 1733-1741 (1984); II. Phys. Rev. D30, 2573-2578 (1984)
[23] Brown, M.R., Ottewill, A.C.: Asymmetry of vector propagators in curved space-time. Oxford preprint (1985)
[24] Vilenkin, N.J.: Special functions and the theory of group representations. Providence, RI: Am. Math. Soc. 1968 · Zbl 0172.18404
[25] Burges, C.J.C., Davis, S., Freedman, D.Z., Gibbons, G.W.: Supersymmetry in anti-de Sitter space. MIT CTP preprint # 1259 (to appear in Ann. Phys. 1986) · Zbl 0606.53045
[26] Drummond, I.T., Shore, G.M.: Dimensional regularization of massless quantum electrodynamics in spherical spacetime. Ann. Phys.117, 89-120 (1979)
[27] Peters, P.C.: Covariant electromagnetic potentials and fields in Friedmann universes. J. Math. Phys.10, 1216-1224 (1969)
[28] Birrell, N.D.: Stress tensor conformal anomaly for Weinberg-type fields in curved spacetimes. J. Phys. A12, 337-351 (1979)
[29] Ruse, H.S., Walker, A.G., Willmore, T.J.: Harmonic spaces. Roma: Edizioni Cremonese 1961 · Zbl 0134.39202
[30] Dullemond, C., van Beveren, E.: Scalar field propagators in anti-de Sitter spacetime. J. Math. Phys.26, 2050-2058 (1985)
[31] Stephani, V.H.: The electrodynamic Green functions in a closed universe (in German). Acta Phys. Pol. B3, 427-436 (1972)
[32] Allen, B., Lütken, C.A.: Spinor two-point functions in maximally symmetric spaces. Tufts University Physics preprint (submitted to Phys. Lett.) · Zbl 0606.53043
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.