zbMATH — the first resource for mathematics

On the critical behavior of the magnetization in high-dimensional Ising models. (English) Zbl 0629.60106
We derive rigorously general results on the critical behavior of the magnetization in Ising models, as a function of the temperature and the external field. For the nearest-neighbor models it is shown that in \(d\geq 4\) dimensions the magnetization is continuous at \(T_ c\) and its critical exponents take the classical values \(\delta =3\) and \(\beta =\), with possible logarithmic corrections at \(d=4\). The continuity, and other explicit bounds, formally extend to \(d>3\). Other systems to which the results apply include long-range models in \(d=1\) dimension, with \(1/| x-y|^{\lambda}\) couplings, for which 2/(\(\lambda\)-1) replaces d in the above summary. The results are obtained by means of differential inequalities derived here using the random current representation, which is discussed in detail for the case of a nonvanishing magnetic field.

60K35 Interacting random processes; statistical mechanics type models; percolation theory
82B27 Critical phenomena in equilibrium statistical mechanics
82B05 Classical equilibrium statistical mechanics (general)
Full Text: DOI
[1] A. D. Sokal, A rigorous inequality for the specific heat of an Ising or? 4 ferromagnet.Phys. Lett. 71A:451-453 (1979).
[2] M. Aizenman, Geometric analysis of? 4 2 fields and Ising models. Parts I and II,Commun. Math. Phys. 86:1-48 (1982). · Zbl 0533.58034 · doi:10.1007/BF01205659
[3] M. Aizenman and R. Graham, On the renormalized coupling constant and the susceptibility in? 4 4 field theory and the Ising model in four dimensions,Nucl. Phys. B225[FS9]:261-288 (1983). · doi:10.1016/0550-3213(83)90053-6
[4] J. Fröhlich, On the triviality of?? d 2 theories and the approach to the critical point ind > 4 dimension,Nucl. Phys. B200[FS4]:281-296 (1982). · doi:10.1016/0550-3213(82)90088-8
[5] S. Coleman and E. Weinberg, Radiative correction as the origin of spontaneous symmetry breakdown,Phys. Rev. D7:1888 (1973).
[6] M. Aizenman, Rigorous studies of critical behavior. II,Statistical Physics and Dynamical Systems: Rigorous Results (Birkhäuser, Boston, 1986, to be published). · Zbl 0667.60102
[7] J. Fröhlich and A. D. Sokal, to be published.
[8] C. Newman. private communication.
[9] J. Fröhlich, B. Simon, and T. Spencer, Infrared bounds, phase transition and continuous symmetry breaking,Commun. Math. Phys. 50:79-85 (1976). · doi:10.1007/BF01608557
[10] A. D. Sokal, An alternate constructive approach to the? 3 4 quantum field theory, and a possible destructive approach to? 4 4 ,Annal. Inst. Henri Poincaré 37:317-398 (1982).
[11] M. Aizenman, Rigorous studies of critical behavior,Applications of Field Theory in Statistical Mechanics, L. Garrido, ed., Springer Lecture Notes in Physics (SpringerVerlag, New York, in press). · Zbl 0667.60102
[12] D. Brydges, J. Fröhlich, and T. Spencer, The random walk representation of classical spin systems and correlation inequalities,Commun. Math. Phys. 83:123-150 (1982). · doi:10.1007/BF01947075
[13] D. C. Brydges, J. Fröhlich, and A. D. Sokal, The random walk representation of classical spin systems and correlation inequalities. II. The skeleton inequalities,Commun. Math. Phys. 91:117-139 (1983). · doi:10.1007/BF01206055
[14] R. Fernández, J. Fröhlich, and A. D. Sokal, in preparation.
[15] A. D. Sokal, More inequalities for critical exponents,J. Stat. Phys. 25:25-56 (1981). · doi:10.1007/BF01008477
[16] R. B. Griffiths, C. A. Hurst, and S. Sherman, Concavity of magnetization of an Ising ferromagnet in a positive external field,J. Math. Phys. 11:790 (1970). · doi:10.1063/1.1665211
[17] E. Brezin, J. C. Le Guillou, and J. Zinn-Justin, inPhase Transitions and Critical Phenomena, C. Domb and M. S. Green, eds. (Academic Press, London, New York, San Francisco, 1976).
[18] J. Lebowitz, private communication.
[19] R. B. Griffiths, Correlations in Ising ferromagnets. II. External magnetic fields,J. Math. Phys. 8:484-489 (1967). · doi:10.1063/1.1705220
[20] M. E. Fisher, Critical temperatures of anisotropic Ising lattices. II. General upper bounds,Phys. Rev. 162:480-485 (1967). · doi:10.1103/PhysRev.162.480
[21] R. Graham, Correlation inequalities for the truncated two-point function of an Ising ferromagnet,J. Stat. Phys. 29:177-183 (1982). · doi:10.1007/BF01020780
[22] A. D. Sokal, private communication; see G. Felder and J. Fröhlich, Intersection properties of simple random walks: A renormalization group approach,Commun. Math. Phys. 97:111-124 (1985). · Zbl 0573.60065 · doi:10.1007/BF01206181
[23] J. Fröhlich, R. Israel, E. H. Lieb, and B. Simon, Phase transitions and reflection positivity. I. General theory and long-range lattice models,Commun. Math. Phys. 62:1 (1978). · doi:10.1007/BF01940327
[24] B. Simon and R. B. Griffiths, The (? 4)2 field theory as a classical Ising model,Commun. Math. Phys. 33:145-164 (1973). · doi:10.1007/BF01645626
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.