zbMATH — the first resource for mathematics

Constructing metrics with the Heine-Borel property. (English) Zbl 0626.54035
A metric space (X,d) is said to be Heine-Borel if any closed and bounded subset of it is compact. We show that any locally compact and \(\sigma\)- compact metric space can be made Heine-Borel by a suitable remetrization. Furthermore we prove that if the original metric d is complete, then this can be done so that the new Heine-Borel metric d’ is locally identical to d, i.e., for every \(x\in X\) there exists a neighborhood of x on which the two metrics coincide.

54E50 Complete metric spaces
54E35 Metric spaces, metrizability
54D45 Local compactness, \(\sigma\)-compactness
Full Text: DOI
[1] Leonard M. Blumenthal, Theory and applications of distance geometry, Second edition, Chelsea Publishing Co., New York, 1970. · Zbl 0050.38502
[2] Herbert Busemann, Local metric geometry, Trans. Amer. Math. Soc. 56 (1944), 200 – 274. · Zbl 0061.37403
[3] Michael Edelstein, An extension of Banach’s contraction principle, Proc. Amer. Math. Soc. 12 (1961), 7 – 10. · Zbl 0096.17101
[4] Ryszard Engelking, Topologia ogólna, Państwowe Wydawnictwo Naukowe, Warsaw, 1975 (Polish). Biblioteka Matematyczna. Tom 47. [Mathematics Library. Vol. 47]. Ryszard Engelking, General topology, PWN — Polish Scientific Publishers, Warsaw, 1977. Translated from the Polish by the author; Monografie Matematyczne, Tom 60. [Mathematical Monographs, Vol. 60].
[5] Julien Garsoux, Espaces vectoriels topologiques et distributions, Avec la collaboration de Daniel Ribbens; Préface de Pierre Houzeau de Lehaie, Dunod, Paris, 1963 (French). · Zbl 0117.08702
[6] A. A. Ivanov, Fixed points of mappings of metric spaces, Zap. Naučn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 66 (1976), 5 – 102, 207 (Russian, with English summary). Studies in topology, II. · Zbl 0366.54023
[7] H. E. Vaughan, On locally compact metrisable spaces, Bull. Amer. Math. Soc. 43 (1937), no. 8, 532 – 535. · Zbl 0017.33002
[8] Stephen Willard, General topology, Addison-Wesley Publishing Co., Reading, Mass.-London-Don Mills, Ont., 1970. · Zbl 1052.54001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.