zbMATH — the first resource for mathematics

Generally covariant quantum field theory and scaling limits. (English) Zbl 0626.46063
The authors try to eliminate the rigid metric structure of space-time and to characterize the generally covariant quantum field theory in terms of the allowed germs of families of states. Here general covariance means that the field equations are independent of the coordinate system used to describe 4-dimensional smooth manifold \({\mathcal M}\). Let X be a vector field on \({\mathcal M}^ n\) with the components \(X^{\mu}(x)=x^{\mu}- \vec x^{\mu}+0(x-\bar y)^ 2\), x(\(\lambda)\) an orbit \(dx^{\mu}(\lambda)/d\lambda = \lambda^{-1}X^{\mu}(x(\lambda))\) with \(x(1)=P\), and \(\eta^ xP\) the tangent vector of x(\(\lambda)\) at \(\lambda =0\). Let \(f^{(n)}\) be a smooth function (monomial) on \({\mathcal M}^ n\) to \({\mathfrak C}\) with support in \({\mathcal O}\) in every argument, \({\mathcal A}({\mathcal O})\) formal linear combinations of the \(f^{(n)}\)’s of different degrees n, \(\hat {\mathcal A}(\hat {\mathcal O})\) the similar tensor algebra of test functions with support in \(\hat {\mathcal O}=\eta {\mathcal O}\) and \(\hat f^{(n)}\in \hat {\mathcal A}(\hat {\mathcal O})\). They derive two transformations \[ (\beta \hat f^{(n)})(P_ 1,...,P_ n)=\hat f^{(n)}(\eta P_ 1,...,\eta P_ n) \] and \[ (\beta^{- 1}\alpha_{\lambda}\beta \hat f^{(n)})(z_ 1,...,z_ n)=\hat f^{(n)}(\lambda^{-1}z_ 1,...,\lambda^{-1}z_ n). \] Next let a state \(\omega\) on \({\mathcal A}\) denote a linear functional on \({\mathcal A}\) with \(\omega (1)=1\) and \(\omega (A^*A)\geq 0\). The state is equal to a vacuum expectation of a representation \(\pi_{\omega}(A)\) of \(A\in {\mathcal A}\), and can give a detector when \({\mathcal M}=R^ 4\). A folium \({\mathcal F}_ i({\mathcal O}_ i)\) means the equivalent class of a representation \(\pi_ i\) of \({\mathcal A}({\mathcal O}_ i)\), and a scaling limit state at \(\bar P\in {\mathcal M}\) is the one on \(\hat {\mathcal A}\) given by \(\omega_{\bar P}^{(n)}(\hat f^{(n)})=\lim_{\lambda \to 0}N(\lambda)^ n\omega^{(n)}(\alpha_{\lambda}\beta \hat f^{(n)})\), where \(N(\lambda)\geq 0\) is a monotone function for \(\lambda\in (0,\infty].\)
The authors’ first result is the following: Uniformly defined scaling limit states are covariant under dilations and invariant under translations. Their basic main problems are the following (i) and (ii):
(i) May an open covering \({\mathcal O}=\cup {\mathcal O}_ i\) derive different folia \({\mathcal F}({\mathcal O})\) whose restrictions to \({\mathcal O}_ i\) are given \({\mathcal F}_ i({\mathcal O}_ i)?\)
(ii) What are the compatibility conditions for the set \(\{{\mathcal F}_ i({\mathcal O}_ i)\}\) so that an extension \({\mathcal F}({\mathcal O})\) may exist? Relating to the problems they show that the Borchers algebra \({\mathcal A}({\mathcal O})\) is free.
Reviewer: H.Yamagata

46N99 Miscellaneous applications of functional analysis
81T05 Axiomatic quantum field theory; operator algebras
83C99 General relativity
Full Text: DOI
[1] Einstein, A.: Äther und Relativitätstheorie. Vortrag Universität Leiden. Berlin, Heidelberg, New York, Springer 1920 · JFM 47.0777.03
[2] Ekstein, H.: Presymmetry II. Phys. Rev.184, 1315 (1969) · doi:10.1103/PhysRev.184.1315
[3] Avishai, Y., Ekstein, H.: Presymmetry of classical relativistic fields. Phys. Rev.D7, 983 (1973)
[4] Borchers, H. J.: On the structure of the algebra of field operators. Nuovo Cimento24, 214 (1962); Uhlmann, A.: Über die Definition der Quantenfelder nach Wightman und Haag, Wissenschaftl. Zeit. d. KMU Leipzig,11, Math. Nat. Reihe Heft 2 (1962) · Zbl 0129.42205 · doi:10.1007/BF02745645
[5] Haag, R., Narnhofer, H., Stein, U.: On quantum field theory in gravitational background. Commun. Math. Phys.94, 219 (1984) · doi:10.1007/BF01209302
[6] Erdelyi, A., Magnus, W., Oberhettinger, F.: Higher transcendental functions. New York, Toronto, London: McGraw-Hill 1953 · Zbl 0051.30303
[7] Bell, J. S., Leinaas, J. M.: Electrons as accelerated thermometers. Nucl. Phys.B212, 131 (1983) · doi:10.1016/0550-3213(83)90601-6
[8] Bisognano, J. J., Wichmann, E. H.: On the duality condition for a Hermitian scalar field. J. Math. Phys.16, 985 (1975); On the duality condition for quantum fields. J. Math. Phys.17, 303 (1976) · Zbl 0316.46062 · doi:10.1063/1.522605
[9] Reeh, H., Schlieder, S.: Bemerkungen zur Unitäräquivalenz von lorentzinvarianten Feldern. Nuovo Cimento22, 1051 (1961) · Zbl 0101.22402 · doi:10.1007/BF02787889
[10] Driessler, W.: Duality and absense of locally generated superselection sectors for CCR-type algebras. Commun. Math. Phys.70, 213 (1979) · Zbl 0427.46047 · doi:10.1007/BF01200052
[11] Roberts, J. E.: Private communication, dated January 1983
[12] Fredenhagen, K., Hertel, J.: Local algebras of observables and pointlike localized fields. Commun. Math. Phys.80, 555 (1981) · Zbl 0472.46051 · doi:10.1007/BF01941663
[13] Dubois-Violette, M.: A Generalization of the classical moment problem on *-algebras with applications to relativistic theory. Commun. Math. Phys.43, 225 (1976),54, 151 (1977) · Zbl 0362.46044 · doi:10.1007/BF02345022
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.