zbMATH — the first resource for mathematics

Interpolation of scattered data: distance matrices and conditionally positive definite functions. (English) Zbl 0625.41005
Among other things, we prove that multiquadric surface interpolation is always solvable, thereby settling a conjecture of R. Franke.

41A05 Interpolation in approximation theory
41A63 Multidimensional problems (should also be assigned at least one other classification number from Section 41-XX)
Full Text: DOI
[1] M. Abramowitz, I. A. Stegun (1966): Handbook of Mathematical Functions (National Bureau of Standards Applied Mathematics Series 55). Washington, D.C.: National Bureau of Standards.
[2] F. P. Agterberg (1974): Geomathematics. Amsterdam: Elsevier.
[3] N. Aronszajn (1950):Theory of reproducing kernels. Trans. Amer. Math. Soc.,68:337–404. · Zbl 0037.20701 · doi:10.1090/S0002-9947-1950-0051437-7
[4] R. Askey (1973): Radial Characteristic Functions (MRC Technical Sum: Report no. 1262). University of Wisconsin.
[5] R. Barnhill, S. Stead (1983):Multistage trivariate surfaces. Preprint. · Zbl 0552.65009
[6] Blumenthal (1970): Theory and Application of Distance Geometry. New York: Chelsea Publishing.
[7] W. F. Donoghue (1974): Monotone Matrix Functions and Analytic Continuation. Berlin Heidelberg New York: Springer-Verlag. · Zbl 0278.30004
[8] J. Duchon (1976):Splines minimizing rotation-invariant semi-norms in Sobolev spaces. In: Constructive Theory of Functions of Several Variables (W. Schempp, K. Zeller, eds.). Berlin Heidelberg New York: Springer-Verlag.
[9] N. Dyn, D. Levin, S. Rippa (1983):Numerical procedures for global surface smoothing of noisy scattered data. Preprint. · Zbl 0553.41019
[10] R. Franke (1982):Scattered data interpolation: tests of some methods. Math. Comp.,38:381–200. · Zbl 0476.65005
[11] R. Franke (1983):Lecture notes on global basis function methods for scattered data. International Symposium on Surface Approximation, University of Milano, Govgano, Italy.
[12] G. Gasper (1975):Positivity and special functions. In: The Theory and Application of Special Functions (R. Askey, ed.). New York: Academic Press. · Zbl 0326.33009
[13] I. M. Gelfand, N. Ya. Vilenkin (1964): Generalized Functions, Vol. 4. New York: Academic Press.
[14] R. L. Hardy (1971):Multiquadric equations of topography and other irregular surfaces. J. Geophys. Res., C.
[15] R. L. Hardy (1982):Surface fitting with biharmonic and harmonic models. In: Proceedings of the NASA Workshop on Surface Fitting. College Station, Texas: Center for Approximation Theory, Texas A & M University, pp. 136–146.
[16] S. Helgason (1980): The Radon Transform. Basel: Birkhäuser. · Zbl 0453.43011
[17] J. V. Linnik (1953):Linear forms and statical criteria, II. Ukrain. Mat. Zh.,51:247–290 [also (1962): Selected Translations in Mathematical Statistics and Probability, Vol. 5. Providence: American Mathematical Society, pp. 41–90]. · Zbl 0052.36701
[18] E. Luckas (1970): Characteristic Functions. New York: Hafner.
[19] G. Matheron (1973):The intrinsic random functions and their applications. Adv. in Appl. Probab.,5:439–468. · Zbl 0324.60036 · doi:10.2307/1425829
[20] G. Matheron (1981):Splines and kriging: their formal equivalence. In: Syracuse University Geology Contribution 8 (D. F. Marriam, ed.). Syracuse, New York: Department of Geology, Syracuse University.
[21] J. Meinguet (1979):An intrinsic approach to multivariate spline interpolation at arbitrary points. In: Polynomial and Splines Approximation (B. N. Sahney, ed.). Dordrecht: D. Reidel, pp. 163–190. · Zbl 0413.41007
[22] J. von Neumann, I. J. Schoenberg (1941):Fourier integrals and metric geometry. Trans. Amer. Math. Soc.,50:226–251. · Zbl 0028.41002
[23] K. Salkauskas (1982):Some relationships between surface splines and kriging. In: Multivariate Approximation Theory II (W. Schempp, K. Zeller, eds.). Basel: Birkhäuser, pp. 313–325. · Zbl 0499.41005
[24] I. P. Schagen (1979):Interpolation in two dimensions – a new technique. J. Inst. Math. Appl.,23:53–59. · Zbl 0404.65006 · doi:10.1093/imamat/23.1.53
[25] I. J. Schoenberg (1935):Remarks to Maurice Frechet’s article ”Sur la definition axiomatique d’une classe d’espace distancies vectoriellemment applicable sur l’espace de Hilbert.” Ann. of Math.,36:724–732. · Zbl 0012.30703 · doi:10.2307/1968654
[26] I. J. Schoenberg (1938):Metric spaces and positive definite functions. Trans. Amer. Math. Soc.,44:522–536. · Zbl 0019.41502 · doi:10.1090/S0002-9947-1938-1501980-0
[27] I. J. Schoenberg (1938):Metric spaces and completely monotone functions. Ann. of Math.,39:811–841. · JFM 64.0617.03 · doi:10.2307/1968466
[28] J. Stewart (1976):Positive definite functions and generalizations, an historical survey. Rocky Mountain J. Math.,6:409–434. · Zbl 0337.42017 · doi:10.1216/RMJ-1976-6-3-409
[29] Wahba (1982): Private communication.
[30] G. N. Watson (1966): Theory of Bessel Functions, 2nd ed. Cambridge: Cambridge University Press. · Zbl 0174.36202
[31] D. V. Widder (1946): The Laplace Transform. Princeton: Princeton University Press. · Zbl 0060.24801
[32] R. E. Williamson (1956):Multiply monotone functions and their Laplace transform. Duke Math. J.,23:189–207. · Zbl 0070.28501 · doi:10.1215/S0012-7094-56-02317-1
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.