×

zbMATH — the first resource for mathematics

Union and actualization of module specifications: Some compatibility results. (English) Zbl 0623.68017
In recent papers, a notion of algebraic module specification has been introduced, along with operations to combine them. Here we take a closer look at the operations of union of module specifications with import and export interfaces and of actualization of the parameter specification that the two interfaces share. We show that both the standard and parametrized actualization are compatible with the previously introduced notion of submodule and with the union operation.

MSC:
68P05 Data structures
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] E.K. Blum, H. Ehrig, and F. Parisi-Presicce, Algebraic specification of modules and their basic interconnections, J. Comput. System Sci., 34, 293-339. · Zbl 0619.68027
[2] Blum, E.K.; Parisi-Presicce, F., The semantics of shared submodule specifications, (), 359-373 · Zbl 0563.68014
[3] Burstall, R.M.; Goguen, J.A., Putting theories together to make specifications, (), 1045-1058
[4] Ehrich, H.-D., On the theory of specification, implementation and parameterization of abstract data types, J. assoc. comput. Mach., 29, No. 1, 206-227, (1982) · Zbl 0478.68020
[5] Ehrig, H.; Fey, W.; Parisi-Presicce, F., Distributive laws for composition and union of module specifications for software systems, () · Zbl 0602.68021
[6] Ehrig, H.; Fey, W.; Parisi-Presicce, F.; Blum, E.K., Algebraic theory of module specifications with constraints, (), 59-77 · Zbl 0602.68021
[7] Ehrig, H.; Kreowski, H.-J., Compatibility of parameter passing and implementation of parametrized data types, Theoret. comput. sci., 27, 255-286, (1983) · Zbl 0553.68015
[8] Ehrig, H.; Kreowski, H.-J.; Thatcher, J.W.; Wagner, E.G.; Wright, J.B., Parameter passing in algebraic specification languages, (), 322-369
[9] Ehrig, H.; Mahr, B., Foundations of algebraic specifications 1 : equations and initial semantics, () · Zbl 0557.68013
[10] Ehrig, H.; Wagner, E.G.; Thatcher, J.W., Algebraic specifications with generating constraints, (), 118-202 · Zbl 0518.68019
[11] Ehrig, H.; Weber, H., Algebraic specification of modules, (), 231-258
[12] Ehrig, H.; Weber, H., Programming in the large with algebraic module specifications, () · Zbl 0606.68009
[13] Futatsugi, K.; Goguen, J.A.; Jouannaud, J.-P.; Meseguer, J., Principles of OBJ2, (), 52-66
[14] Ganzinger, H., Parameterized specifications: parameter passing and implementation, ACM toplas, 5, No. 3, (1983) · Zbl 0511.68010
[15] Giarratana, V.; Gimona, F.; Montanari, U., Observability concepts in abstract data type specifications, (), 576-587 · Zbl 0338.68023
[16] Goguen, J.A.; Meseguer, J., Universal realization, persistent interconnection and implementation of abstract modules, (), 265-281 · Zbl 0493.68014
[17] Goguen, J.A.; Thatcher, J.W.; Wagner, E.G., An initial algebra approach to the specification, correctness and implementation of abstract data types, (), 80-149
[18] Herrlich, H.; Strecker, G.E., Category theory, (1973), Allyn & Bacon Boston · Zbl 0265.18001
[19] Liskov, B.H.; Zilles, S.N., Specification techniques for data abstraction, IEEE trans. software engrg., SE-1, No. 1, 7-19, (1975)
[20] Parisi-Presicce, F.; Parisi-Presicce, F., Inner and mutual compatibility of basic operations on module specifications, (), 30-44, full version: · Zbl 0589.68017
[21] Parnas, D.L., A technique for software module specification with examples, Comm. ACM, 5, No. 5, 330-336, (1972)
[22] Reichel, H., Behavioral equivalence-A unifying concept for initial and final specification methods, (), 27-39
[23] Sannella, D.; Tarleckt, A., Program specification and development in standard ML, (), 67-77
[24] Sannella, D.; Tarlecki, A., On observational equivalence and algebraic specification, (), 308-322
[25] Sannella, D.; Wirsing, M., A kernel language for algebraic specification and implementation, (), 1-44
[26] (), reference manual
[27] Weber, H.; Ehrig, H., Specification of modular systems, IEEE trans. software engrg., (June 1986)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.