×

zbMATH — the first resource for mathematics

Pseudospectral methods for solution of the incompressible Navier-Stokes equations. (English) Zbl 0622.76028
Four numerical schemes for solving the incompressible Navier-Stokes equations in primitive variables are discussed and compared. All use the Chebyshev pseudospectral matrix (CPSM) approach for evaluating spatial derivatives. Two of the methods are new and two are previously reported methods [A. J. Chorin, Math. Comput. 22, 745-762 (1968), and L. Kleiser and U. Schumann, Numerical methods in fluid mechanics, Proc. 3rd GAMM Conf., Köln 1979, Notes Numer. Fluid Mech. 2, 165-174 (1980; Zbl 0463.76020)] that have been recast in CPSM form in order to compare results. The two-dimensional Navier-Stokes equations have been solved for a thermally deriven cavity using the four techniques. Details are given and numerical results are presented.
Reviewer: W.Velte

MSC:
76D05 Navier-Stokes equations for incompressible viscous fluids
65N99 Numerical methods for partial differential equations, boundary value problems
76M99 Basic methods in fluid mechanics
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Ku, H.C.; Taylor, T.D.; Hirsh, R.S., J. comp. phys., (1986), (in press)
[2] Peyret, R.; Taylor, T.D., Computational methods for fluid flow, (1983), Springer London · Zbl 0514.76001
[3] Moin, P.; Kim, J., J. comput. phys., 35, 381, (1980)
[4] Morchoisne, Y., AIAA paper 81-0109, (1981)
[5] Orszag, S.A.; Kells, J.C., J. fluid mech., 96, 159, (1980)
[6] Deville, M.; Orszag, S.A., ()
[7] Gottlieb, D.; Hussaini, M.Y.; Orszag, S.A., Spectral methods jor partial differential equations, (1984), SIAM New York
[8] Taylor, T.D.; Murdock, J.W., ()
[9] Zang, T.A.; Hussaini, M.Y., ICASE report 85-27, (1985)
[10] Chorin, A.J., Math. comput., 22, 745, (1968)
[11] Ku, H.C.; Taylor, T.D.; Hatziavramidis, D.T., (), 201
[12] Kim, J.; Moin, P., J. comput. phys., 59, 308, (1985)
[13] Harlow, F.H.; Amsden, A.A., J. comput. phys., 3, 80, (1968)
[14] Cazalbou, J.B.; Braza, M.; Ha Minh, H., (), 786
[15] Briley, W.R., J. comput. phys., 14, 8, (1974)
[16] Yashchin, D.; Israeli, M.; Wolfshtein, M., (), 533
[17] Kleiser, L.; Schumann, U., (), 287
[18] Patera, A.T., J. comput. phys., 54, 468, (1984)
[19] le Quere, P.; de Roquefort, T.A., J. comput. phys., 57, 210, (1985)
[20] Deville, M.; Kleiser, L.; Montigny-Rannou, F., Int. J. num. meth. fluids, 4, 1149, (1984)
[21] Ku, H.C.; Hatziavramidis, D.T., J. comput. phys., 56, 495, (1984)
[22] Taylor, T.D.; Hirsh, R.S.; Nadworthy, M.M., Comput. fluids, 12, 1, (1984)
[23] Streett, C.L.; Zang, T.A.; Hussaini, M.Y., J. comput. phys., 57, 43, (1985)
[24] Ouazzani, J.; Peyret, R.; Zakaria, A., (), 287
[25] Roache, P.J., Computational fluid dynamics, (1976), Hermosa Publishers Braunschweig
[26] Kleiser, L.; Schumann, U., Spectral methods for partial deferential equations, (1984), SIAM Albuquerque · Zbl 0661.76052
[27] Mallinson, G.D.; de Vahl Davis, G., J. fluid mech., 83, 1, (1977)
[28] de Vahl Davis, G.; Jones, I.P., Int. J. num. meth. fluids, 3, 227, (1983)
[29] Phillips, T.N., J. comput. phys., 54, 365, (1984)
[30] Pepper, D.W.; Cooper, R.F., Comput. fluids, 8, 213, (1980)
[31] Hirsh, R.S.; Taylor, T.D.; Nadworthy, M.M., Comput. fluids, 11, 251, (1983)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.