×

zbMATH — the first resource for mathematics

Some inequalities for martingales and stochastic convolutions. (English) Zbl 0622.60066
The paper contains useful improvements of maximal inequalities for Hilbert space valued martingales and stochastic convolution integrals. The possibly smoothing property of the semigroup in the latter case is not used.
Reviewer: P.Kotelenez

MSC:
60H15 Stochastic partial differential equations (aspects of stochastic analysis)
60G44 Martingales with continuous parameter
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] DOI: 10.1080/07362998308809004 · Zbl 0511.60055 · doi:10.1080/07362998308809004
[2] Doob J.L., Stochastic Processes (1953)
[3] DOI: 10.1016/0022-247X(82)90041-5 · Zbl 0497.93055 · doi:10.1016/0022-247X(82)90041-5
[4] Ichikawa A., stability and invariant measures, Stochastics 12 pp 1– (1984)
[5] DOI: 10.1080/17442508208833233 · Zbl 0495.60066 · doi:10.1080/17442508208833233
[6] DOI: 10.1080/07362998408809036 · Zbl 0552.60058 · doi:10.1080/07362998408809036
[7] Kotelenez P., Stochastic Space-Time Models and Limit Theorems pp 95– (1985) · Zbl 0601.60063
[8] DOI: 10.1515/9783110845563 · Zbl 0503.60054 · doi:10.1515/9783110845563
[9] DOI: 10.1214/aop/1176994827 · Zbl 0426.60059 · doi:10.1214/aop/1176994827
[10] Pardoux E., Intégrales Stochastiques Hilbertiennes, Cahiers de Mathématiques de la Décision (1976)
[11] Shiryayev A.N., Probability (1984) · doi:10.1007/978-1-4899-0018-0
[12] DOI: 10.1080/07362998408809032 · Zbl 0539.60056 · doi:10.1080/07362998408809032
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.