zbMATH — the first resource for mathematics

Sharpness of the phase transition in percolation models. (English) Zbl 0618.60098
The equality of two critical points – the percolation threshold \(p_ H\) and the point \(p_ T\) where the cluster size distribution ceases to decay exponentially – is proven for all translation invariant independent percolation models on homogeneous \(d\)-dimensional lattices (\(d\geq 1\)). The analysis is based on a pair of new nonlinear partial differential inequalities for an order parameter \(M(\beta,h)\), which for \(h=0\) reduces to the percolation density \(P_{\infty}\) – at the bond density \(p=1- e^{-\beta}\) in the single parameter case. These are:
(1) \(M\leq h\partial M/\partial h+M^ 2+\beta M\partial M/\partial \beta\), and (2) \(\partial M/\partial \beta \leq | J| M\partial M/\partial h\).
Inequality (1) is intriguing in that its derivation provides yet another hint of a ”\(\phi^ 3\) structure” in percolation models. Moreover, through the elimination of one of its derivatives, (1) yields a pair of ordinary differential inequalities which provide information on the critical exponents \({\hat \beta}\) and \(\delta\). One of these resembles an Ising model inequality of Fröhlich and Sokal and yields the mean field bound \(\delta\geq 2\), and the other implies the result of Chayes and Chayes that \({\hat \beta}\leq 1\).
An inequality identical to (2) is known for Ising models, where it provides the basis for Newman’s universal relation \(\hat\beta(\delta-1)\geq 1\) and for certain extrapolation principles, which are now made applicable also to independent percolation. These results apply to both finite and long range models, with or without orientation, and extend to periodic and weakly inhomogeneous systems.

60K35 Interacting random processes; statistical mechanics type models; percolation theory
82B43 Percolation
Full Text: DOI
[1] Kesten, H.: The critical probability of bond percolation on the square lattice equals 1/2. Commun. Math. Phys.74, 41-59 (1980) · Zbl 0441.60010 · doi:10.1007/BF01197577
[2] Russo, L.: On the critical percolation probabilities. Z. Wahrscheinlichkeitstheor. Verw. Geb.56, 229-237 (1981) · Zbl 0457.60084 · doi:10.1007/BF00535742
[3] Aizenman, M., Newman, C.M.: Discontinuity of the percolation density in one-dimensional 1/|x?y|2 percolation models. Commun. Math. Phys.107, 611-647 (1986) · Zbl 0613.60097 · doi:10.1007/BF01205489
[4] Aizenman, M., Chayes, J.T., Chayes, L., Imbrie, J., Newman, C.M.: An intermediate phase with slow decay of correlations in one-dimensional 1/|x?y|2 Ising and Potts models (in preparation) · Zbl 1084.82514
[5] Aizenman, M.: Contribution in: Statistical physics and dynamical systems (Proceedings Kösheg 1984). Fritz, J., Jaffe, A., Szasz, D. (eds.). Boston: Birkhäuser 1985 · Zbl 0564.60012
[6] Chayes, J.T., Chayes, L.: Critical points and intermediate phases on wedges of ?d. J. Phys. A (to appear) · Zbl 0636.60105
[7] Hammersley, J.M.: Percolation processes. Lower bounds for the critical probability. Ann. Math. Statist.28, 790-795 (1957) · Zbl 0091.13903 · doi:10.1214/aoms/1177706894
[8] Aizenman, M., Newman, C.M.: Tree graph inequalities and critical behavior in percolation models. J. Stat. Phys.36, 107-143 (1984) · Zbl 0586.60096 · doi:10.1007/BF01015729
[9] Newman, C.M., Schulman, L.S.: One-dimensional 1/|j ? i| s percolation models: The existence of a transition fors?2. Commun. Math. Phys.104, 547-571 (1986) · Zbl 0604.60097 · doi:10.1007/BF01211064
[10] Griffiths, R.B., Hurst, C.A., Sherman, S.: Concavity of magnetization of an Ising ferromagnet in a positive external field. J. Math. Phys.11, 790-795 (1970) · doi:10.1063/1.1665211
[11] Newman, C.M.: Shock waves and mean field bounds. Concavity and analyticity of the magnetization at low temperature. Appendix to contribution in Proceedings of the SIAM workshop on multiphase flow, G. Papanicolau (ed.) (to appear)
[12] Aizenman, M., Fernández, R.: On the critical behavior of the magnetization in high-dimensional Ising models. J. Stat. Phys.44, 393-454 (1986) · Zbl 0629.60106 · doi:10.1007/BF01011304
[13] Harris, A.B., Lubensky, T.C., Holcomb, W.K., Dasgupta, C.: Renormalization group approach to percolation problems. Phys. Rev. Lett.35, 327-330 (1975) · doi:10.1103/PhysRevLett.35.327
[14] Chayes, J.T., Chayes, L.: An inequality for the infinite cluster density in Bernoulli percolation. Phys. Rev. Lett.56, 1619-1622 (1986) · Zbl 0661.60120 · doi:10.1103/PhysRevLett.56.1619
[15] Fröhlich, J., Sokal, A.D.: The random walk representation of classical spin systems and correlation inequalities. III. Nonzero magnetic field (in preparation)
[16] Fernández, R., Fröhlich, J., Sokal, A.D.: Random-walk models and random-walk representations of classical lattice spin systems (in preparation)
[17] Griffiths, R.B.: Correlations in Ising ferromagnets. II. External magnetic fields. J. Math. Phys.8, 484-489 (1967) · doi:10.1063/1.1705220
[18] Aizenman, M., Kesten, H., Newman, C.M.: Uniqueness of the infinite cluster and continuity of connectivity functions for short and long range percolation. Submitted to Commun. Math. Phys. · Zbl 0642.60102
[19] van den Berg, J., Kesten, H.: Inequalities with applications to percolation and reliability. J. Appl. Probab.22, 556-569 (1985) · Zbl 0571.60019 · doi:10.2307/3213860
[20] Kesten, H.: Percolation theory for mathematicians. Boston: Birkhäuser 1982 · Zbl 0522.60097
[21] Griffeath, D.: The basic contact process. Stochastic Processes Appl.11, 151-185 (1981) · Zbl 0463.60085 · doi:10.1016/0304-4149(81)90002-8
[22] Aizenman, M., Barsky, D.J., Fernández, R.: The phase transition in a general class of Ising-type models in sharp. Submitted to J. Stat. Phys. · Zbl 0618.60098
[23] Chayes, J.T., Chayes, L., Newman, C.M.: Bernoulli percolation above threshold: an invasion percolation analysis. Ann. Probab. (to appear) · Zbl 0627.60099
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.