×

zbMATH — the first resource for mathematics

Une construction élémentaire des surfaces d’Inoue-Hirzebruch. (An elementary construction of Inoue-Hirzebruch surfaces). (French) Zbl 0617.14025

MSC:
14J25 Special surfaces
32B10 Germs of analytic sets, local parametrization
14M17 Homogeneous spaces and generalizations
PDF BibTeX XML Cite
Full Text: DOI EuDML
References:
[1] Dabrowski, K.: Kuranishi families for Hopf surfaces. Ann. Pol. Math.XLV, 61-84 (1985) · Zbl 0578.32053
[2] Dloussky, G.: Structures des surfaces de Kato. Mém. Soc. Math. Fr., Nouv. Ser. 120 p. (1984) · Zbl 0543.32012
[3] Dloussky, G.: Une propriété topologique des surfaces de Kato. Preprint 1986
[4] Dloussky, G.: Sur la classification des germes d’applications holomorphes contractames. Math. Ann.280, 649-661 (1988) · Zbl 0677.32004 · doi:10.1007/BF01450082
[5] Inoue, M.: New surfaces with no meromorphic functions. II. Complex Analysis and Algebric Geometry. Iwarami Shoten Publ. Tokyo 1977 · Zbl 0365.14011
[6] Kato, M.: Compact complex manifolds containing ?global spherical shells?. Proceedings of the Int. Symp. Alg. Geometry, Kyoto 1977 Tokyo: Kinokuniya Book Store 1978 · Zbl 0379.32023
[7] Kodaira, K.: On the structure of compact complex analytic surfaces. I. Ann. Math.71, 111-152 (1960); II. Am. J. Math.88, 682-721 (1966) · Zbl 0098.13004 · doi:10.2307/1969881
[8] Nakamura, I.: On the surfaces of class VII0 with curves. Invent. math.78, 393-443 (1984) · Zbl 0575.14033 · doi:10.1007/BF01388444
[9] Pinkham, H.C.: Automorphisms of cusps and Inoue-Hirzebruch surfaces. Compos. Math.52 299-313 (1984) · Zbl 0573.14015
[10] Potters, J.: On almost homogeneous compact complex analytic surfaces. Invent. math.8, 244-266 (1969) · Zbl 0205.25102 · doi:10.1007/BF01406077
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.