×

zbMATH — the first resource for mathematics

Turbulence statistics in fully developed channel flow at low Reynolds number. (English) Zbl 0616.76071
A direct numerical simulation of a turbulent channel flow is performed. The unsteady Navier-Stokes equations are solved numerically at a Reynolds number of 3300, based on the mean centreline velocity and channel half- width, with about \(4\times 10^ 6\) grid points (192\(\times 129\times 160\) in x,y,z). All essential turbulence scales are resolved on the computational grid and no subgrid model is used. A large number of turbulence statistics are computed and compared with the existing experimental data at comparable Reynolds numbers. Agreements as well as discrepancies are discussed in detail. Particular attention is given to the behaviour of turbulence correlations near the wall. In addition, a number of statistical correlations which are complementary to the existing experimental data are reported for the first time.

MSC:
76F10 Shear flows and turbulence
76M99 Basic methods in fluid mechanics
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] DOI: 10.1017/S0022112076002048 · doi:10.1017/S0022112076002048
[2] DOI: 10.1146/annurev.fl.16.010184.000531 · doi:10.1146/annurev.fl.16.010184.000531
[3] DOI: 10.1017/S0022112070000691 · Zbl 0191.25503 · doi:10.1017/S0022112070000691
[4] DOI: 10.1017/S002211207600267X · doi:10.1017/S002211207600267X
[5] Dean, Trans. ASME I: J. Fluids Engng 100 pp 215– (1978) · doi:10.1115/1.3448633
[6] Clark, J. Basic Engng 90 pp 455– (1968) · doi:10.1115/1.3605163
[7] DOI: 10.1063/1.1762434 · Zbl 0173.53401 · doi:10.1063/1.1762434
[8] Chapman, NEAR TR 63 pp 209– (1984)
[9] Nikuradse, Forsch. Geb. Ing. Wes. 155 pp 441– (1929)
[10] DOI: 10.1017/S0022112074001108 · doi:10.1017/S0022112074001108
[11] Moser, Rep. 155 pp 441– (1984)
[12] Barlow, Rep. 139 pp 325– (1985)
[13] Moin, J. Fluid Mech. 155 pp 441– (1985)
[14] DOI: 10.1017/S0022112084000380 · doi:10.1017/S0022112084000380
[15] DOI: 10.1017/S0022112082001116 · Zbl 0491.76058 · doi:10.1017/S0022112082001116
[16] DOI: 10.1016/0021-9991(80)90076-5 · Zbl 0425.76027 · doi:10.1016/0021-9991(80)90076-5
[17] Moin, AIAA Paper 22 pp 84– (1984)
[18] Laufer, NACA Rep. 22 pp 1053– (1951)
[19] DOI: 10.1063/1.862737 · doi:10.1063/1.862737
[20] DOI: 10.1017/S0022112071002490 · doi:10.1017/S0022112071002490
[21] Kim, J. Fluid Mech. 162 pp 339– (1985)
[22] DOI: 10.1063/1.865401 · doi:10.1063/1.865401
[23] DOI: 10.1063/1.864413 · Zbl 0522.76058 · doi:10.1063/1.864413
[24] DOI: 10.1017/S0022112083002347 · doi:10.1017/S0022112083002347
[25] DOI: 10.1017/S0022112083002487 · doi:10.1017/S0022112083002487
[26] DOI: 10.1017/S0022112082002225 · doi:10.1017/S0022112082002225
[27] DOI: 10.1017/S002211207200165X · doi:10.1017/S002211207200165X
[28] Hussain, J. Fluids Engng 97 pp 568– (1975) · doi:10.1115/1.3448125
[29] DOI: 10.1146/annurev.fl.07.010175.000305 · doi:10.1146/annurev.fl.07.010175.000305
[30] DOI: 10.1063/1.861719 · doi:10.1063/1.861719
[31] DOI: 10.1017/S0022112072000515 · doi:10.1017/S0022112072000515
[32] DOI: 10.1017/S0022112076001961 · Zbl 0325.76067 · doi:10.1017/S0022112076001961
[33] DOI: 10.1063/1.1694060 · doi:10.1063/1.1694060
[34] Spalart, NASA TM 129 pp 27– (1985)
[35] DOI: 10.1063/1.865403 · doi:10.1063/1.865403
[36] DOI: 10.1017/S0022112083000634 · doi:10.1017/S0022112083000634
[37] Falco, AIAA Paper 65 pp 80– (1980)
[38] DOI: 10.1063/1.864178 · doi:10.1063/1.864178
[39] DOI: 10.1017/S0022112074001479 · doi:10.1017/S0022112074001479
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.