×

zbMATH — the first resource for mathematics

Traction BIE solutions for flat cracks. (English) Zbl 0616.73093
The paper deals with the numerical solution techniques for the traction boundary integral equation (BIE), which describes the opening (and sliding) displacements of the surface of the traction loaded crack or arbitrary planform embedded in an elastic infinite body (buried crack problem). The traction BIE is a singular integral equation of the first kind for the displacement gradients. Its solution poses a number of numerical problems, such as the presence of derivatives of the unknown function in the integral equation, the modeling of the crack front displacement gradient singularity, and the regularization of the equation’s singular kernels. All of the above problems have been addressed and solved. Details of the algorithm are provided. Numerical results of a number of crack configurations are presented, demonstrating high accuracy of the method.

MSC:
74R05 Brittle damage
74S99 Numerical and other methods in solid mechanics
65R20 Numerical methods for integral equations
45E99 Singular integral equations
74G70 Stress concentrations, singularities in solid mechanics
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Blandford, G.E.; Ingraffea, A.R.; Liggett, J.A. (1981): Two-dimensional stress intensity factor computations using the boundary element method. Int. J. Numer. Meth. Eng. 17, 387-404 · Zbl 0463.73082 · doi:10.1002/nme.1620170308
[2] Bui, H. D. (1977): An integral equation method for solving the problem of plane crack of arbitrary shape: J. Mech. Physics and Solids 25, 23-39 · Zbl 0355.73074
[3] Cruse, T.A. (1969): Numerical solutions in three-dimensional clastostatics. Int. J. of Solids and Struct. 5, 1259-1274 · Zbl 0181.52404 · doi:10.1016/0020-7683(69)90071-7
[4] Cruse, T.A.; Van Buren, W. (1971): Three-dimensional elastic stress analysis of a fracture specimen with an edge crack: Int. J. Fract. Mech., 7, 1-15
[5] Cruse, T.A. (1975): Boundary-integral equation method for three-dimensional elastic fracture mechanics analysis. AFOSRTR-75-0813, Accession No. ADA-11060, 13-20
[6] Cruse, T.A. (1978): Two-dimensional BIE fracture mechanics analysis. Appl: Math: Model. 2, 287-293 · Zbl 0436.73110 · doi:10.1016/0307-904X(78)90023-9
[7] Guidera, J.T.; Lardner, R.W. (1975): Penny shaped cracks. J. Elast. 5, 59-73 · Zbl 0312.73117 · doi:10.1007/BF01389258
[8] Henshell, R.D.; Shaw, K.G. (1975): Crack tip elements are unnecessary. Int. J. Numer. Meth: Eng. 9, 495-509 · Zbl 0306.73064 · doi:10.1002/nme.1620090302
[9] Hinton, E.; Campbell, J.S. (1974): Local and global smoothing of discontinuous finite element functions using a least squares method. Int. J. Numer. Meth. Eng. 8, 461-480 · Zbl 0286.73066 · doi:10.1002/nme.1620080303
[10] Labeyrie, J.; Chauchot, P. (1984): On the crack tip singularities in 3-D BEM, Boundary Elements VI. Proc. 6th Int. Conf. on Board the Liner the Queen Elizabeth 2, Southampton to New York. Berlin, Heidelberg, New York: Springer
[11] Polch, E.Z. ; Cruse, T.A. ; Huang, C.-J.: Buried crack analysis with an advanced traction BIE algorithm. In: Advanced Topics in Boundary Element Analysis. T.A. Cruse, A.B. Pifko, and H. Armen, (eds) Presented at the Winter Annual Meeting of the American Society of Mechanical Engineers, Miami Beach, Florida, Nov. 17-22, 1985 · Zbl 0607.73094
[12] Putot, C.J. (1980): Une nouvelle methode de fissures planes. Thèse, Université Paris VI
[13] Rizzo, F.J.; Shippy, D.J. (1977): An advanced boundary integral equation method for three-dimensional thermoelasticity. Int. J. Numer. Meth. Eng. 11, 1753-1768 · Zbl 0387.73007 · doi:10.1002/nme.1620111109
[14] Tada, H.; Paris, P.; Irwin, G. (1973): The stress analysis of cracks handbook. Del Research Corporation
[15] Weaver, J. (1977): Three-dimensional crack analysis. Int. J. Solids Struct. 13, 321-330 · Zbl 0373.73093 · doi:10.1016/0020-7683(77)90016-6
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.