×

zbMATH — the first resource for mathematics

Elliptic differential operators on noncompact manifolds. (English) Zbl 0615.58048
The authors study, on a noncompact manifold with a finite number of ends, elliptic differential operators which have a well-defined limit at each infinity. They also determine how the index of the operator changes as the weighting is varied. In the first part of the paper only noncompact manifolds with a single end are studied. The Fredholm property is derived using standard techniques. The index formulas are obtained using multiple-layer potentials and asymptotic expansions. In the second part the authors give some applications of the first part. They generalize the results to manifolds with multiple ends, allowing for different weights on different ends. Next, they consider Douglis-Nirenberg systems on \({\mathbb{R}}^ n\). Finally, they apply their results to the \(L^ 2\) Hodge theory for manifolds with conic singularities.
Reviewer: D.Yang

MSC:
58J99 Partial differential equations on manifolds; differential operators
PDF BibTeX XML Cite
Full Text: Numdam EuDML
References:
[1] S. Agmon - A. Douglis - L. Nirenberg , Estimates near the boundary for solutions of elliptic partial differential equations with general boundary conditions II , Comm. Pure Appl. Math. , 17 ( 1964 ), pp. 35 - 92 . MR 162050 | Zbl 0123.28706 · Zbl 0123.28706 · doi:10.1002/cpa.3160170104
[2] S. Agmon - L. Nirenberg , Properties of solutions of ordinary differential equations in Banach space , Comm. Pure Appl. Math. , 16 ( 1963 ), pp. 121 - 239 . MR 155203 | Zbl 0117.10001 · Zbl 0117.10001 · doi:10.1002/cpa.3160160204
[3] M.S. Agranovi - M.I. Vi , Elliptic boundary value problems depending on a parameter , Dokl. Akad. Nauk SSSR , 149 ( 1963 ), pp. 223 - 226 = Soviet Math. Dokl. , 4 ( 1963 ), pp. 325 - 329 . MR 146529 | Zbl 0145.14701 · Zbl 0145.14701
[4] R. Beals , A general calculus of pseudo differential operators , Duke Math. J. , 42 ( 1975 ), pp. 1 - 42 . Article | MR 367730 | Zbl 0343.35078 · Zbl 0343.35078 · doi:10.1215/S0012-7094-75-04201-5 · minidml.mathdoc.fr
[5] M. Cantor , Some problems of global analysis on asymptotically simple manifolds , Compositio Math. , 38 ( 1979 ), pp. 3 - 35 . Numdam | MR 523260 | Zbl 0402.58004 · Zbl 0402.58004 · numdam:CM_1979__38_1_3_0 · eudml:89392
[6] J. Cheeger , On the spectral geometry of spaces with cone-like singularities , Proc. Nat. Acad. Sci. , 76 ( 1979 ), pp. 2103 - 2106 . MR 530173 | Zbl 0411.58003 · Zbl 0411.58003 · doi:10.1073/pnas.76.5.2103
[7] J. Cheeger - M. Goresky - R. Macpherson , L2-cohomology and intersection homology of singular algebraic varieties, Seminar on Differential Geometry (S. T. Yau ed.), Princeton Univ. Press , 1982 , Princeton, N. J. MR 645745 | Zbl 0503.14008 · Zbl 0503.14008
[8] Y. Choquet-Bruhat - D. Christodoulou , Elliptic systems in Hs,\delta spaces on manifolds which are Euclidean at infinity , Acta Math. , 146 ( 1981 ), pp. 129 - 150 . Zbl 0484.58028 · Zbl 0484.58028 · doi:10.1007/BF02392460
[9] H.O. Cordes - E. Herman , Gel’fand theory of pseudo-dif f erential operators , Amer. J. Math. , 90 ( 1968 ), pp. 681 - 717 . MR 454743 | Zbl 0169.47105 · Zbl 0169.47105 · doi:10.2307/2373478
[10] A. Douglis - L. Nirenberg , Interior estimates for elliptic systems of partial differential equations , Comm. Pure Appl. Math. , 8 ( 1955 ), pp. 503 - 538 . MR 75417 | Zbl 0066.08002 · Zbl 0066.08002 · doi:10.1002/cpa.3160080406
[11] L. Hörmander , Pseudo-differential operators and nonelliptic boundary problems , Ann. of Math. , 83 ( 1966 ), pp. 129 - 209 . MR 233064 | Zbl 0132.07402 · Zbl 0132.07402 · doi:10.2307/1970473
[12] R. Illner , Algebras of pseudo-differential operators in Lp(Rn) , Comm. Partial Diff. Eq. , 2 ( 1977 ), pp. 359 - 393 . MR 442758 | Zbl 0352.47021 · Zbl 0352.47021 · doi:10.1080/03605307708820034
[13] T. Kato , Perturbation Theory for Linear Operators , Springer-Verlag , 1966 , New York . MR 203473 | Zbl 0148.12601 · Zbl 0148.12601
[14] V.A. Kondrat’ev , Boundary value problems for elliptic equations in domains with conical or angular points , Trans. Moscow Math. Soc. , 16 ( 1967 ). MR 226187 | Zbl 0194.13405 · Zbl 0194.13405
[15] H. Kumano-Go , Oscillatory integrals of symbols of pseudo-dif f erential operators on Rn, and operators of Fredholm type , Proc. Japan Acad. , 49 ( 1973 ), pp. 397 - 402 . MR 355693 | Zbl 0272.47032 · Zbl 0272.47032 · doi:10.3792/pja/1195519291
[16] R. Lockhart , Fredholm properties of a class of elliptic operators on noncompact manifolds , Duke Math. J. , 48 ( 1981 ), pp. 289 - 312 . Article | MR 610188 | Zbl 0486.35027 · Zbl 0486.35027 · doi:10.1215/S0012-7094-81-04817-1 · minidml.mathdoc.fr
[17] R. Lockhart - R. McOwen , On elliptic systems in Rn , Acta Math ., 150 ( 1983 ), pp. 125 - 135 . MR 697610 | Zbl 0517.35031 · Zbl 0517.35031 · doi:10.1007/BF02392969
[18] R. Lockhart - R. McOwen , Correction for on elliptic systems in Rn , Acta Math . 153 ( 1984 ), pp. 303 - 304 . MR 766267 | Zbl 0569.35027 · Zbl 0569.35027 · doi:10.1007/BF02392381
[19] V.G. Maz’ja - B.A. Plamenevski , Estimates in Lp and Hölder classes and the Miranda-Agmon .Maximum principle for solutions of elliptic boundary problems in domains with singular points on the boundary (in Russian) , Math. Nachr. , 81 ( 1978 ), pp. 25 - 82 . MR 492821 | Zbl 0371.35018 · Zbl 0371.35018 · doi:10.1002/mana.19780810103
[20] R. McOwen , Behavior of the Laplacian on weighted Sobolev spaces , Comm. Pure Appl. Math. , 32 ( 1979 ), pp. 783 - 795 . MR 539158 | Zbl 0426.35029 · Zbl 0426.35029 · doi:10.1002/cpa.3160320604
[21] R. McOwen , Boundary value problems for the Laplacian in an exterior domain , Comm. Partial Diff. Eq. , 6 ( 1981 ), pp. 783 - 798 . MR 623645 | Zbl 0473.35036 · Zbl 0473.35036 · doi:10.1080/0360530810882192
[22] R. McOwen , Fredholm theory of partial differential equations on complete Riemannian manifolds, Pacific J . Math. , 87 ( 1980 ), pp. 169 - 185 . Article | MR 590874 | Zbl 0457.35084 · Zbl 0457.35084 · doi:10.2140/pjm.1980.87.169 · minidml.mathdoc.fr
[23] R. McOwen , On elliptic operators in Rn , Comm. Partial Diff. Eq. , 5 ( 1980 ), pp. 913 - 933 . MR 584101 | Zbl 0448.35042 · Zbl 0448.35042 · doi:10.1080/03605308008820158
[24] R. Melrose - G. Mendoza , Elliptic operators of totally characteristic type , preprint.
[25] L. Nirenberg - H.F. Walker , The nullspaces of elliptic partial differential operators in Rn , J. Math. Anal. Appl. , 42 ( 1973 ), pp. 271 - 301 . MR 320821 | Zbl 0272.35029 · Zbl 0272.35029 · doi:10.1016/0022-247X(73)90138-8
[26] V S. RABINOVIč, Pseudo- differential operators on a class of noncompact manifolds , Math. USSR-Sb. , 18 ( 1972 ), pp. 45 - 59 . Zbl 0257.58009 · Zbl 0257.58009 · doi:10.1070/SM1972v018n01ABEH001610
[27] G. De Rham , Varieties Differentiables , 3 rd ed., Hermann , Paris , 1973 . Zbl 0284.58001 · Zbl 0284.58001
[28] R. Seeley , Singular integrals and boundary value problems , Amer. J. Math. , 88 ( 1966 ), pp. 781 - 809 . MR 209915 | Zbl 0178.17601 · Zbl 0178.17601 · doi:10.2307/2373078
[29] L.A. Bagirov - V.A. Kondrat’ev , Elliptic equations in Rn , Differential Equations , 11 ( 1975 ), pp. 375 - 379 . MR 377270 | Zbl 0331.35021 · Zbl 0331.35021
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.