×

zbMATH — the first resource for mathematics

Analysis on generalized superspaces. (English) Zbl 0612.58009
In the past few years there have been made several attempts to generalize the so-called super-mathematics to cases where the domain of scalars is not just a Grassmann algebra but any associative \(\sigma\)-commutative G- graded algebra A (G is an abelian group, \(\sigma\) a commutation factor on G). In addition to the references cited by the authors one might also mention the work by R. Trostel [Hadronic J. 6, 1518-1578 (1983; Zbl 0559.58003), and ibid., 305-405 (1983; Zbl 0533.58012)].
The present work, too, deals with this problem. Starting from their preparatory work [J. Math. Phys. 25, 3367-3374 (1984; Zbl 0558.17006)] the authors first specify their algebra of ”supernumbers” A and define the corresponding ”superspaces”, some of the basic concepts and theorems of classical analysis like differentiation, Taylor expansion, the inverse mapping theorem, and integration.
Reviewer: M.Scheunert

MSC:
58C50 Analysis on supermanifolds or graded manifolds
58A50 Supermanifolds and graded manifolds
15A78 Other algebras built from modules
16W50 Graded rings and modules (associative rings and algebras)
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] DOI: 10.1016/0370-1573(77)90066-7 · doi:10.1016/0370-1573(77)90066-7
[2] DOI: 10.1063/1.526234 · doi:10.1063/1.526234
[3] DOI: 10.1063/1.526234 · doi:10.1063/1.526234
[4] DOI: 10.1063/1.526234 · doi:10.1063/1.526234
[5] DOI: 10.1063/1.526234 · doi:10.1063/1.526234
[6] DOI: 10.1063/1.526234 · doi:10.1063/1.526234
[7] DOI: 10.1063/1.524113 · Zbl 0423.17003 · doi:10.1063/1.524113
[8] DOI: 10.1063/1.526105 · Zbl 0558.17006 · doi:10.1063/1.526105
[9] DOI: 10.1063/1.525911 · Zbl 0517.17002 · doi:10.1063/1.525911
[10] DOI: 10.1063/1.525911 · Zbl 0517.17002 · doi:10.1063/1.525911
[11] DOI: 10.1063/1.525911 · Zbl 0517.17002 · doi:10.1063/1.525911
[12] DOI: 10.1063/1.526440 · Zbl 0552.17003 · doi:10.1063/1.526440
[13] DOI: 10.1103/PhysRev.90.270 · Zbl 0051.21001 · doi:10.1103/PhysRev.90.270
[14] DOI: 10.1063/1.524585 · Zbl 0447.58003 · doi:10.1063/1.524585
[15] DOI: 10.1063/1.526619 · Zbl 0568.15020 · doi:10.1063/1.526619
[16] DOI: 10.1063/1.526233 · doi:10.1063/1.526233
[17] DOI: 10.1007/BF01942330 · Zbl 0464.58006 · doi:10.1007/BF01942330
[18] DOI: 10.1007/BF00574154 · Zbl 0602.58009 · doi:10.1007/BF00574154
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.