# zbMATH — the first resource for mathematics

The drop theorem, the petal theorem and Ekeland’s variational principle. (English) Zbl 0612.49011
The following three statements are considered: (A) (altered Ekeland’s variational principle). Let $$f: M\to {\mathbb{R}}\cup \{+\infty \}$$ be an l.s.c. function on a complete metric space (M,d). Suppose f is bounded below and not everywhere $$+\infty$$. Then for any $$\gamma >0$$ and any $$x_ 0\in M$$ there exists $$a\in M$$ such that $$f(a)<f(x)+\gamma d(a,x)$$ for all $$x\in M$$, $$x\neq a$$, and f(a)$$\leq f(x_ 0)-\gamma d(a,x_ 0).$$
(F) (the flower petal theorem). Let X be a complete subset of a metric space (E,d). Let $$x_ 0\in X$$ and let $$b\in E\setminus X$$, $$r\leq d(b,X)$$, $$s=d(b,x_ 0)$$. Take any $$\gamma >0$$ and denote $$P_{\gamma}(a,b)=\{x\in E:\gamma d(x,a)+d(x,b)\leq d(a,b)\}$$. Then there exists $$a\in X\cap P_{\gamma}(x_ 0,b)$$ such that $$P_{\gamma}(a,b)\cap X=\{a\}.$$
(D) (the drop theorem). Let C be a complete subset of some normed vector space E, let $$x_ 0\in C$$ and let B be a closed ball with centre b and radius $$r<d(b,C)$$. Denote $$D(a,B)=\{a+t(b-a):b\in B$$, $$t\in [0,1]\}$$. Then there exists $$a\in C\cap D(x_ 0,B)$$ with $$D(a,B)\cap C=\{a\}.$$
The author gives a short proof of (A) and then proves the implications (A)$$\Rightarrow (F)\Rightarrow (D)\Rightarrow (A)$$. Some other geometrical properties of Banach spaces are proved as corollaries from the above-mentioned results.
Reviewer: M.Studniarski

##### MSC:
 49J52 Nonsmooth analysis 46B20 Geometry and structure of normed linear spaces 47H10 Fixed-point theorems 49J27 Existence theories for problems in abstract spaces
Full Text:
##### References:
  Altman, M., Contractor directions, directional contractors and directional contractions for solving equations, Pacif. J. math., 62, 1-18, (1976) · Zbl 0352.47027  Altman, M., Contractors and contractor directions, theory and applications, (1977), Marcel Dekker New York · Zbl 0363.65045  Aubin, J.-P.; Siegel, J., Fixed points and stationary points of dissipative systems, Proc. am. math. soc., 78, 391-398, (1980) · Zbl 0446.47049  Auslender, A., Stability in mathematical programming with nondifferentiable data, SIAM J. control optim., 22, 239-254, (1984) · Zbl 0538.49020  Bishop, E.; Phelps, R.R., The support functional of a convex set, (), 26-36 · Zbl 0149.08601  Borwein, J., Tangent cones, starshape and convexity, Int. J. math. math. sci., 1, 459-477, (1978) · Zbl 0438.52009  Borwein, J., Stability and regular points of inequality systems, () · Zbl 0557.49020  B\scORWEIN J., A tangent cone separation principle, preprint, Dalhousie University, N.S., Canada.  Brezis, H.; Browder, F.E., A general principle on ordered sets in nonlinear functional analysis, Adv. math., 21, 355-364, (1976) · Zbl 0339.47030  Bronsted, A., On a lemma of Bishop and Phelps, Pacif. J. math., 55, 335-341, (1974) · Zbl 0248.46009  Browder, F., Normal solvability and the Fredholm alternative for mappings into infinite dimensional manifolds, J. funct. analysis, 8, 250-274, (1971) · Zbl 0228.47044  Caristi, J., Fixed point theorems for mappings satisfying inwardness conditions, Trans. am. math. soc., 215, 241-251, (1976) · Zbl 0305.47029  Clarke, F.H., Optimization and nonsmooth analysis, (1983), John Wiley New York · Zbl 0727.90045  Danes, J., A geometric theorem useful in nonlinear functional analysis, Boll. un. mat. ital., 6, 369-375, (1972) · Zbl 0236.47053  Dolecki, S., Hypertangent cones for a special class of sets, (), 3-11  Dolecki, S.; Penot, J.-P., The Clarke’s tangent cone and limits of tangent cones, Publs math. pau, II, 1-11, (1983)  Ekeland, I., On the variational principle, J. math. analysis applic., 47, 325-353, (1974) · Zbl 0286.49015  Ekeland, I., Nonconvex minimization problems, Bull. am. math. soc., 1, 443-474, (1979) · Zbl 0441.49011  Ekeland, I., The Hopf-rinow theorem in infinite dimension, J. diff. geom. & C.R. acad. sci. Paris A-B, 284, 149-150, (1977) · Zbl 0345.58004  Ekeland, I., Proc. international congress of mathematicians, (1979), Vancouver  Ekeland, I.; Lebourg, G., Generic Fréchet-differentiability and perturbed optimization problems in Banach spaces, Trans. am. math. soc., 224, 193-216, (1976) · Zbl 0313.46017  Ekeland, I.; Temam, R., Analyse convexe et problèmes variationnels, Analyse convexe et problèmes variationnels, (1976), North Holland Amsterdam  Frankowska, H., The first order necessary conditions for nonsmooth variational and control problems, SIAM J. control optim., 22, 1-13, (1984) · Zbl 0529.49011  Gautier, S.; Isac, G.; Penot, J.-P., Surjectivity of multifunctions under generalized differentiability assumptions, Bull. austr. math. soc., 28, 13-21, (1983) · Zbl 0518.46031  Giner, E., Ensembles et fonctions étoilés, (), Preprint · Zbl 0368.46035  Hiriart-Urruty, J.-B., A short proof of the variational principle for approximate solutions of a minimization problem, Am. math. mon., 90, 206-207, (1983) · Zbl 0516.49015  Ioffe, A.D., Regular points of Lipschitz mappings, Trans. am. math. soc., 251, 61-69, (1979) · Zbl 0427.58008  Ioffe, A.D., Non-smooth analysis: differential calculus of non-differentiable mappings, Trans. am. math. soc., 266, 1-56, (1981) · Zbl 0651.58007  Kirk, W.A.; Caristi, J., Mapping theorems in metric and Banach spaces, Bull. acad. polon. sci., 23, 891-894, (1975) · Zbl 0313.47041  Ya, Kruger A., Ε-approximate differential and normal cones, Viniti, (1982), (In Russian.)  Lebourg, G., Perturbed optimization problems in Banach spaces, Bull. soc. math. France, 60, 95-111, (1979), Mémoire · Zbl 0417.90089  Le, Van Hot, Fixed points theorems for multivalued mappings, Communs math. univ. carol., 23, 137-145, (1982) · Zbl 0492.47035  Loridan, P., Necessary conditions for ϵ-optimality, (), 140-152 · Zbl 0494.90085  Penot, J.-P., A short constructive proof of Caristi’s fixed point theorem, Publs math. pau, X, 1-3, (1976)  P\scENOT J.-P., Open mapping theorems and linearization stability.  Penot, J.-P., The use of generalized subdifferential calculus in optimization theory, Operat. res. verfahren, 31, 495-511, (1978) · Zbl 0409.26003  P\scENOT J.-P., A characterization of Clarke’s strict tangent cone via nonlinear semigroups, Proc. Am. math. Soc.  Phelps, R.R., Support cones in Banach spaces and their applications, Adv. math., 13, 1-19, (1974) · Zbl 0284.46015  Pohozhayev, S.I., On the normal solvability of nonlinear operators, Dokl. akad. nauk SSSR, 184, 40-43, (1969)  Ray, W.O.; Walker, A.M., Mapping theorems for Gâteaux differentiable and accretive operators, Nonlinear analysis, 6, 423-433, (1982) · Zbl 0488.47031  Rockafellar, R.T., Directionally Lipschitzian functions and subdifferential calculus, Proc. lond. math. soc., 39, 331-355, (1979) · Zbl 0413.49015  Sullivan, F., A characterization of complete metric spaces, Proc. am. math. soc., 83, 345-346, (1981) · Zbl 0468.54021  Treiman, J.S., Characterization of Clarke’s tangent and normal cones in finite and infinite dimensions, Nonlinear analysis, 7, 771-783, (1983) · Zbl 0515.49013  Turicini, M., Mapping theorems via variable drops in Banach spaces, R. ist lombardo, classe sci. A, 114, 164-168, (1980)  Ursescu, C., Sur le contingent dans LES espaces de Banach, Proc. inst. math. iasi, 183-184, (1976)  Zabrejko, P.P.; Krasnoselskij, M.A., On the solvability of nonlinear operator equations, Funkcional anal. prilozen, 5, 42-44, (1971), (in Russian)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.