zbMATH — the first resource for mathematics

Auslander-Reiten sequences with few middle terms and applications to string algebras. (English) Zbl 0612.16013
Let us recall that if \(0\to X\to Y\to Z\to 0\) is an Auslander-Reiten sequence of modules over an Artin algebra \(A\) for an indecomposable nonprojective \(A\)-module \(Z\) then the numerical invariant \(\alpha(Z)\) is defined to be the number of indecomposable direct summands of \(Y\). By \(\alpha(A)\) we denote the supremum of all \(\alpha(Z)\) for all indecomposable, nonprojective \(A\)-modules \(Z\).
In section 1 the authors prove that for any two primitive idempotents \(e,f\in A\) if \(0\neq a\in fJe\) has the property that for each indecomposable direct summand \(C\) of \(Je/Aa\), \(C\cap\Pi(soc(Ae/Ja))\neq 0\), where \(\Pi:Ae/Ja\to Ae/Aa\) denotes canonical projection, [for example this holds if \(a\in fJe\setminus fJ^ 2e\)] then \(\alpha(Ae/Aa)=1\).
In section 2 it is shown that if \({\mathcal C}\) is a connected component of the Auslander-Reiten quiver \(\Gamma_ A\) containing no projective and no injective modules on which \(\alpha\) is bounded by 2, then \({\mathcal C}\) is of the form \({\mathbb{Z}}A_{\infty}\), \({\mathbb{Z}}A_{\infty}/<\tau^ n>\) for some \(n\in {\mathbb{N}}_ 1\), \({\mathbb{Z}}C_{\infty}\) or \({\mathbb{Z}}A^{\infty}_{\infty}\).
In section 3, using previous results, the authors give a full classification of all indecomposable modules over a string algebra \(A\) (i.e. a biserial special algebra whose projective-injective modules are serial) and prove that then \(\alpha(A)\leq 2\) and that almost all connected components of \(\Gamma_ A\) are of the form \({\mathbb{Z}}A^{\infty}_{\infty}\) and \({\mathbb{Z}}A_{\infty}/<\tau>\).
Other proofs of the facts from the last section are contained in P. Dowbor and A. Skowroński, ”Galois coverings of representation-infinite algebras.” Comment. Math. Helv. (to appear) and in B. Wald and J. Waschbüsch, J. Algebra 95, 480-500 (1985; Zbl 0567.16007).
Reviewer: P.Dowbor

16G70 Auslander-Reiten sequences (almost split sequences) and Auslander-Reiten quivers
16D80 Other classes of modules and ideals in associative algebras
16P10 Finite rings and finite-dimensional associative algebras
16P20 Artinian rings and modules (associative rings and algebras)
Full Text: DOI
[1] Auslander M., Applications of morphisms determined by objects 37 pp 245– (1976)
[2] DOI: 10.1080/00927877508822046 · Zbl 0331.16027
[3] DOI: 10.1080/00927877708822180 · Zbl 0396.16007
[4] Auslander, M. and Reiten, I. Uniserial functors. Proceedings Ottawa. 1979. Vol. 832, pp.1–47. Springer LNM.
[5] DOI: 10.1080/00927878308822931 · Zbl 0515.16013
[6] DOI: 10.1007/BF01364137 · Zbl 0435.16016
[7] DOI: 10.1007/BF01420248 · Zbl 0413.16022
[8] Dowbor P., Galois coverings of representation-infinite algebras 238 (1978) · Zbl 0628.16019
[9] Erdmann K., To appear in Proc. London Math. Soc 238 (1978)
[10] Gelfand I.M., Actes du Congrès Inter.national des Mathematician 1 pp 95– (1970)
[11] DOI: 10.1070/RM1968v023n02ABEH001237 · Zbl 0236.22012
[12] Happel, D., Preiser, U. and Ringel, C.M. Vinbergfs characterization of Dynkin diagrams using subadditive functions with application to DTr-periodic modules. Proceedings Ottawa. 1979. Vol. 832, pp.280–294. Springer LNM.
[13] Khoroshkin S.M., Funktional’nyi Analiz i Ego Prilozheniya 15 pp 50– (1981)
[14] DOI: 10.1080/00927878008822512 · Zbl 0436.16027
[15] Nazarova L.A., Funktional’nyi Analiz i Ego Prilozheniya 7 pp 54– (1973)
[16] DOI: 10.1007/BF02566682 · Zbl 0444.16018
[17] DOI: 10.1007/BF01428252 · Zbl 0299.20005
[18] Ringel, C.M. Report on the Brauer-Thrall conjectures. Proceedings Ottawa. 1979. Vol. 831, pp.104–136. Springer LNM.
[19] Ringel C.M., Tame algebras and integral quadratic forms 1099 (1984) · Zbl 0546.16013
[20] DOI: 10.1016/0021-8693(85)90156-5 · Zbl 0549.16017
[21] Skowronski A., J. Reine Angew. Math 345 pp 172– (1983)
[22] DOI: 10.1016/0021-8693(85)90119-X · Zbl 0567.16017
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.