×

zbMATH — the first resource for mathematics

Large deviations from classical paths. Hamiltonian flows as classical limits of quantum flows. (English) Zbl 0607.60025
We prove that in the limit \(\hslash \to 0\), the probability for the paths of the stochastic jump process associated to the quantum time evolution to be in a tublet around the classical trajectory is of order 1-\(\exp \{- A/\hslash \}\). We give some applications of this result to the study of the classical limit of Wigner functions.

MSC:
60F10 Large deviations
81P20 Stochastic mechanics (including stochastic electrodynamics)
46L51 Noncommutative measure and integration
46L53 Noncommutative probability and statistics
46L54 Free probability and free operator algebras
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Albeverio, S., Blanchard, Ph., Combe, Ph., Høegh-Krohn, R., Sirugue, M.: Local relativistic invariant flow for quantum fields. Commun. Math. Phys.90, 329-351 (1983) · Zbl 0538.46053 · doi:10.1007/BF01206886
[2] Combe, Ph., Guerra, F., Rodriguez, R., Sirugue, M., Sirugue-Collin, M.: Quantum dynamical time evolutions as stochastic flows in phase space. Proceeding of the VIIth conference of I.A.M.P., Boulder?Colorado (August 1983) Physica124A, 561-574 (1984)
[3] Donsker, M. D., Varadhan, S. R. S.: Asymptotic evaluation of certain markov expectations for large time. Commun. Pure Appl. Math. I,28, 1-47 (1975) II,29, 279-301 (1976); III,29, 389-461 (1976) · Zbl 0323.60069 · doi:10.1002/cpa.3160280102
[4] Ventsel’, A. D.: Rough limit theorem on large deviations for Markov stochastic processes I. Theory Probab. Appl.21, 227-242 (1976) · Zbl 0361.60005 · doi:10.1137/1121030
[5] Ventsel’, A. D.: Rough limit theorem on large deviations for Markov stochastic processes II. Theory Probab. Appl.21, 499-512 (1976) · Zbl 0361.60006 · doi:10.1137/1121062
[6] Ventsel’, A. D.: Rough limit theorem on large deviations for Markov stochastic processes III. Theory Probab. Appl.24, 675-692 (1979) · Zbl 0447.60024 · doi:10.1137/1124083
[7] Azencott, R.: Grandes déviations et applications. Cours de probabilité de Saint-Flour. Lecture Notes in Mathematics, Vol.774, Berlin, Heidelberg, New York: Springer 1978
[8] Jona-Lasinio, G., Martinelli, F., Scoppola, E.: New approach to the semi-classical limit of quantum mechanics I. Multiple tunnelings in one dimension. Commun. Math. Phys.80, 223-254 (1981) · Zbl 0483.60094 · doi:10.1007/BF01213012
[9] Jona-Lasinio, G., Martinelli, F., Scoppola E.: The semi-classical limit of quantum mechanics: a qualitative theory via stochastic mechanics. Phys. Rep.77, 313-327 (1981) · Zbl 0483.60094 · doi:10.1016/0370-1573(81)90079-X
[10] Azencott, R. Doss, H.: L’équation de Schrödinger quand??0: une approche probabiliste. Stochastic aspects of classical and quantum systems proceedings Marseille. In: Lecture Notes in Mathematics, vol. 1109, pp. 1-17, Berlin, Heidelberg, New York: Springer 1985 · Zbl 0555.60040
[11] Simon, B.: Instantons, double wells and large deviations. Bull. A.M.S. March 1983 · Zbl 0529.35059
[12] De Angelis, G. F., Jona-Lasinio, G., Sirugue, M.: Probabilistic solutions of Pauli type equations. J. Phys. A.16, 2433-2444 (1983) · Zbl 0515.60071 · doi:10.1088/0305-4470/16/11/015
[13] Gihman, I. I., Skorohod, A. V.: Stochastic differential equations. Berlin, Heidelberg, New York: Springer 1972 · Zbl 0242.60003
[14] Hepp, K.: The classical limit for quantum mechanical correlation functions. Commun. Math. Phys.35, 265-277 (1974) · doi:10.1007/BF01646348
[15] Fano, U.: Description of states in quantum mechanics by density matrix and operator techniques. Rev. Mod. Phys.29, 74-93 (1957) · Zbl 0078.19506 · doi:10.1103/RevModPhys.29.74
[16] Weyl, H.: Gruppentheorie und Quantenmechanik, Leipzig: Hirzel, 1931
[17] Gihman, I. I., Skohorod, A. V.: The theory of stochastic processes I, II and III. Berlin, Heidelberg, New York: Springer 1974
[18] Bertrand, J., Gaveau, G.: Transformations canoniques et renormalisation pour certaines équations d’évolution. J. Funct. Anal.50, 81-99 (1983) · Zbl 0524.35092 · doi:10.1016/0022-1236(83)90061-7
[19] Moyal, J. E.: Quantum mechanics as a statistical theory. Proc. Camb. Phil. Soc.45, 99-124 (1949) · Zbl 0031.33601 · doi:10.1017/S0305004100000487
[20] Bertrand, J., Rideau, G.: Stochastic jump processes in the phase space representation of quantum mechanics. Proceedings of the VIth conference of I.A.M.P., Berlin (1981). Lecture Notes in Physics, Vol.153, Berlin, Heidelberg, New York: Springer 1982; Stochastic processes and evolution of quantum observables. Preprint Paris VII, March 1983
[21] Grossmann, A., Seiler, R.: Heat equation on phase space and the classical limit of quantum mechanical expectation values. Commun. Math. Phys.48, 195-197 (1976) · doi:10.1007/BF01617868
[22] Sirugue, M., Sirugue-Collin, M., Truman A.: Semi-classical approximation and microcanonical ensemble. Ann. Inst. Henri Poincaré41, 429-444 (1984) · Zbl 0592.58048
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.