zbMATH — the first resource for mathematics

One person/one vote is not efficient given information on factions. (English) Zbl 0606.90007
This paper argues that if we have any information about special interest groups in a society, then one person/one vote is not the most efficient voting system. Instead weighted voting is appropriate where the weights assigned to the various individuals depend on the correlation between different individual utilities. The reason why one person/one vote is inefficient is that the correlation between individual utilities allows us to get some estimates of preference intensities from the individual votes.
After proving this thesis in general, we illustrate it with a three person example. In the example, we find that moderately correlated individuals get the greatest weight.

91B14 Social choice
91E99 Mathematical psychology
Full Text: DOI
[1] Bates, J. M. and C. W. Granger: 1969, ?The Combination of Forecasts?, J. Oper. Res. Soc. 20, 451-468. · doi:10.1057/jors.1969.103
[2] Bordley, Robert F.: 1982a, ?A Multiplicative Formula for Aggregating Probability Assessments?, Management Science 28 (10), 1137-1148. · Zbl 0492.90042 · doi:10.1287/mnsc.28.10.1137
[3] Bordley, Robert F.: 1982b, ?The Combination of Forecasts: A Bayesian Approach?, J. Oper. Res. Soc. 33 (2), 171-174. · Zbl 0477.62018
[4] Bordley, Robert F.: 1983, ?A Pragmatic Approach Toward Evaluating Election Schemes through Simulation?, American Political Science Review, March, 123-141.
[5] Bordley, Robert F.: 1985, ?A Precise Method for Evaluating Election Schemes?, Public Choice 46 (2), 113-124. · doi:10.1007/BF00179734
[6] Bordley, Robert F.: 1985, ?Using Factions to Estimate Preference Intensity: Improving Upon One Person/One Vote?, Public Choice, 257-268.
[7] Bunn, D. W.: 1975, ?A Bayesian Approach to the Combination of Forecasts?, J. Oper. Res. Soc. 24, 325-329. · Zbl 0305.62063 · doi:10.1057/jors.1975.67
[8] Dahl, R. A.: 1956, A Preface to Democratic Theory, University Chicago of Chicago Press.
[9] DeGroot, M.: 1974, ?Reaching a Consensus?, J. Amer. Stat. Assoc. 69. · Zbl 0282.92011
[10] Downs, A.: 1957, An Economic Theory of Democracy, Harper & Row, New York.
[11] French, S.: 1981, ?Consensus of Opinion?, Eur. J. of Oper. Res. 7. · Zbl 0455.90003
[12] Grofman, B., G. Owen and S. Feld: 1983, ?Thirteen Theorems in Search of the Truth?, Theory and Decision 15, 261-278. · Zbl 0511.90011 · doi:10.1007/BF00125672
[13] Groves, T. and J. Ledyard: 1977, ?Optimal Allocation of Public Goods: A Solution to the Free-Rider Problem?, Econometrica 45, 789-803. · Zbl 0363.90015 · doi:10.2307/1912672
[14] Harsanyi, J. C.: 1955, ?Cardinal Welfare, Individualistic Ethics and Interpersonal Comparisons of Utility?, Journal of Political Economy 63, 309-321. · doi:10.1086/257678
[15] Madison, James: The Federalist Papers.
[16] May, Kenneth: 1952, ?A set of Necessary and Sufficient Conditions for Simple Majority Decisions?, Econometrica 20, 680-684. · Zbl 0047.38402 · doi:10.2307/1907651
[17] May, Kenneth: 1953, ?A Note on the Complete Independence of the Conditions for Simple Majority Decision?, Econometrica 21, 172-173. · Zbl 0050.14903 · doi:10.2307/1906955
[18] Morris, P.: 1974, ?Decision Analysis: Expert Use?, Management Science 20 (9), 1233-1241. · Zbl 0317.90002 · doi:10.1287/mnsc.20.9.1233
[19] Morris, P.: 1977, ?Combining Expert Judgments: A Bayesian Approach?, Management Science 23 (7), 679-683. · Zbl 0371.62020 · doi:10.1287/mnsc.23.7.679
[20] Owen, Guillermo: ?Fair Indirect Voting?, in Proceedings of the 1st NSF Conference on Information Pooling, D. Reidel, Dordrecht (in press). · Zbl 0713.90019
[21] Wagner, Carl: 1984, ?Aggregating Sujective Probabilities: Some Limitative Theorems?, Notre Dame Journal of Formal Logic 25 (3). · Zbl 0544.62010
[22] Winkler, R. L.: 1968, ?The Consensus of Subjective probability Distributions?, Management Science 15 (2), 1361-1375. · doi:10.1287/mnsc.15.2.B61
[23] Winkler, R. L.: 1981, ?Combining Probability Distributions from Dependent Information Sources?, Management Science 27 (4), 479-488. · Zbl 0458.62007 · doi:10.1287/mnsc.27.4.479
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.