×

zbMATH — the first resource for mathematics

Rational ergodicity of geodesic flows. (English) Zbl 0599.58029
We prove the rational ergodicity of geodesic flows on divergence type surfaces of constant negative curvature, and identify their asymptotic types.

MSC:
37A99 Ergodic theory
37D40 Dynamical systems of geometric origin and hyperbolicity (geodesic and horocycle flows, etc.)
53D25 Geodesic flows in symplectic geometry and contact geometry
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] DOI: 10.1007/BF02761186 · doi:10.1007/BF02761186
[2] Ford, Automorphic Functions (1929)
[3] DOI: 10.1007/BF02761665 · Zbl 0376.28018 · doi:10.1007/BF02761665
[4] Tsuji, Potential theory in modern function theory (1959) · Zbl 0087.28401
[5] Sullivan, Publ. Math. IHES 50 pp 171– (1980) · doi:10.1007/BF02684773
[6] Sullivan, Annals of Math. Studies 97 pp 465– (1979)
[7] Renyi, Probability Theory pp 391– (1970)
[8] Rees, Ergod. Th. & Dynam. Sys. 1 pp 107– (1981)
[9] Poincaré, Oeuvres (1956)
[10] Patterson, Mathematika 22 pp 81– (1975)
[11] DOI: 10.1090/S0002-9904-1971-12799-4 · Zbl 0227.53003 · doi:10.1090/S0002-9904-1971-12799-4
[12] Nicholls, Canad. J. Math. 28 pp 805– (1976) · Zbl 0318.30020 · doi:10.4153/CJM-1976-077-8
[13] Hopf, Ber. Verh. Sächs. Akad. Wiss. Leipzig 91 pp 261– (1939)
[14] Hopf, Ergodentheorie (1948)
[15] DOI: 10.2307/1989750 · Zbl 0014.08303 · doi:10.2307/1989750
[16] DOI: 10.1090/S0002-9904-1939-06945-0 · Zbl 0020.40303 · doi:10.1090/S0002-9904-1939-06945-0
[17] DOI: 10.1007/BF02761661 · Zbl 0376.28011 · doi:10.1007/BF02761661
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.