zbMATH — the first resource for mathematics

A theoretical and experimental study of wall turbulence. (English) Zbl 0597.76052
Extending previous results the authors describe turbulence in wall bounded flows as consisting of a hierarchy of wall-attached eddies. The smallest members in this hierarchy are assumed to be created at the wall by instability processes, while the larger members are created from the smaller ones by vortex pairing. This corresponds to an energy flux from high to low wave numbers.
In addition a system of fine scale detached vortices is assumed, which are responsible for the inertial range in the spectrum and viscous dissipation at very high wave numbers, and which are assumed to be the by-product of the above vortex pairing process.
Using dimensional analysis, experimental data and dimensional argument the authors are able to extract out of their model the laws, governing wall turbulence.
Reviewer: G.Zimmermann

76F10 Shear flows and turbulence
Full Text: DOI
[1] DOI: 10.1017/S0022112078002293 · doi:10.1017/S0022112078002293
[2] DOI: 10.1017/S0022112073000637 · doi:10.1017/S0022112073000637
[3] DOI: 10.1017/S0022112081000463__S0022112081000463 · doi:10.1017/S0022112081000463__S0022112081000463
[4] DOI: 10.1017/S002211206400132X · Zbl 0139.22102 · doi:10.1017/S002211206400132X
[5] DOI: 10.1017/S0022112061000883 · Zbl 0127.42602 · doi:10.1017/S0022112061000883
[6] Taylor, Proc. R. Soc. Lond. A164 pp 476– (1938)
[7] DOI: 10.1017/S0022112071001241 · doi:10.1017/S0022112071001241
[8] DOI: 10.1017/S0022112082001311__S0022112082001311 · doi:10.1017/S0022112082001311__S0022112082001311
[9] DOI: 10.1017/S0022112077000457 · doi:10.1017/S0022112077000457
[10] DOI: 10.1017/S0022112075000298 · doi:10.1017/S0022112075000298
[12] Kolmogoroff, C.R. Acad. Sci. U.R.S.S. 30 pp 301– (1941)
[13] Isakson, Tech. Phys. U.S.S.R. IV pp 155– (1937)
[14] DOI: 10.1017/S0022112067001740 · doi:10.1017/S0022112067001740
[15] DOI: 10.1017/S0022112081001791__S0022112081001791 · doi:10.1017/S0022112081001791__S0022112081001791
[16] Hama, Trans. Soc. Naval Arch. Mar. Engrs 62 pp 333– (1954)
[17] Coles, J. Fluid Mech. 1 pp 585– (1956)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.